资源描述
苏教版小学四年级数学计算竞赛题
一、拓展提优试题
1.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有 颗三叶草.
2.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是 .
3.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得 颗巧克力.
4.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做 颗幸运星.
5.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有 个.
6.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.
7.在□中填上适当的数,使竖式成立.
8.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了 分.
9.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?
10.一个两位数除723,余数是30,满足条件的两位数共有 个,分别是 .
11.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的 倍.
12.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是 .
13.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生 人.
14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?
15.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有 组.
【参考答案】
一、拓展提优试题
1.解:(100﹣4)÷3
=96÷3
=32(棵)
答:她已经有了32棵三叶草.
故答案为:32.
2.【分析】本题主要考察等差数列中最小的项.
解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,
中间数是336÷3=112,
所以最小的是112﹣5=107.
【点评】本题主要找到每相邻两个数相差5就能解答.
3.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;
那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,
那么他最多可分得4+40=44颗,
要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,
由此可得出这时每个人的巧克力数为:11、12、13、14,
答:分得最多的小朋友至少可以得14颗巧克力;
故答案为:14.
4.解:[(12﹣8)×4+6]÷(12﹣10),
=[16+6]÷2,
=22÷2,
=11(人);
10×11+6=116(个);
答:一共计划做116颗幸运星.
故答案为:116.
5.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.
[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.
解:[4、6、8]=24.
这筐桃子的数量可以记作24x﹣2,
120<24x﹣2<150.
x是整数,所以x=6,
这筐桃子共有:24×6﹣2=142(个).
答:这筐桃子共有142个.
故答案为:142.
【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.
6.解:设中间的圆圈中的数是A;
根据题意可得:
1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,
66+4A=90,
4A=24,
A=6;
那么每条线段剩下的两个数的和是:18﹣6=12;
又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;
分别放到每条线段剩下的两个圆圈中;
由以上可得:
.
7.解:根据题干分析可得:
8.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
通过等量代换,解决问题.
解:设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
由①+②得:2a+2b+2c=29+43=72
即a+b+c=36
即第三个靶的得分为36分.
答:他在第三个箭靶上得了36分
故答案为:36.
9.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.
:如图所示:,
设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,
4b+4a+4×4=168
4(a+b)=168﹣16
4(a+b)=152,
4(a+b)÷4=152÷4
a+b=38,
原长方形的周长为:
(b+4+a+4)×2
=(38+8)×2
=46×2
=92(分米).
答:原来长方形的周长是92分米.
10.解:723﹣30=693,
693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:
11×3=33,
11×7=77,
3×3×7=63,
11×3×3=99,共4个;
故答案为:33、63、77、99.
11.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,
所以S△ABE=S△ABC,S△ACE=S△ABC,
S△ADE=S△ACE=S△ABC=S△ABC,
三角形ABC的面积是三角形ADE面积的2倍.
故答案为:2.
12.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.
解:1024×1=1024
1024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.
32×4=128
答:正方形的周长是128.
【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.
13.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.
解:35﹣(72﹣36﹣19)
=35﹣17
=18(人)
答:四(1)班有女生 18人.
故答案为:18.
【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.
14.【分析】一个质数的2倍一定是偶数,
一个质数的5倍一定是5的倍数,
而36要拆成两个数的和,要么都是偶数,要么都是奇数,
本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,
当是10时,36﹣10=26,26÷2=13
当是20时,4×5=20,4不是质数
当是30时,5×6=30,6不是质数,据此解答.
解:根据分析可得:
符合题意的5的倍数只能是10,20,30
5×2=10,
5×4=20,
5×6=30,
4和6不是质数,
所以只能是2,
36﹣10=26.
答:这两个质数的乘积是26.
【点评】本题考查了质数的定义及其奇数与偶数的性质.
15.解:128÷2=64(组)
100﹣64=36(组)
36÷2=18(组)
答:那么同组2只动物都是狐狸的共有18组.
故答案为:18.
展开阅读全文