资源描述
Manipulator is now used as a industrial robots in use, the control objectives often appear often in industrial automation. Industrial automation technology has gradually matured, as mature a technology line has been rapid development in industrial automation as a separate subject. Manipulator application began to filter into welding, logistics, mechanical processing, and other industries. Especially at high or very low temperatures, full of poisonous gases, high radiation case, robot in similar circumstances showed great use also brings great convenience to the staff. Precisely because of this robot to get people's attention began to be a high degree of development. Labor rates, working conditions, labor intensive aspects of promoting development. Both at home and abroad to develop the PLC (programmable logic controller) is in various special circumstances and under special conditions set for mechanical devices. Now turned on the development of the microelectronics automatic control technology and the rapid development of the trains, the success of PLC hardware software and simulation control win big and successful development, now continues to develop as a factory automation standards. Because robots are good development of the technology makes a good optimization of productive capital, and robot shows this unique advantages, such as: has good compatibility, wide availability, hardware is complete, and programming that can be mastered in a short time, so in the context of industrial PLC applications became ubiquitous. Manipulator in many developed country agriculture and industry has been applied, such as the use of mechanical harvesting large areas of farmland, repeated operations on the high-speed line that uses a robotic arm, and so on. Today, the high level of automation combined with restrictions on the manipulator development level is slightly lower than the international. The design is mainly arm welding machine by PLC Automation control. This of design let designers on in school by learn of has a must of consolidation, understand has some usually didn't opportunities awareness in world range within some leading level of knowledge has has must awareness, hope designers can in yihou of design in the can success of using in this design in the proceeds of experience 1.2 manipulator in both at home and abroad of research profile automation mechanical arm research began Yu 20th century medium-term, after years with with computer and automation technology of development, Makes mechanical arm on the Grand stage of industrial automation and shine, gradually became an industrial evaluation standards, and its importance can be seen. Now original robotic arm spent most of mass production and use on the production line, which is programmed robotic arm. As the first generation of manipulator position control systems main features, although not back several generations that can detect the external environment, but can still successfully complete like welding, painting, delivery as well as for materials simple movements. Second generation mechanical arms are equipped with sensors and manipulators have the environment there is a certain amount of "sense", when the mechanical arm is to use the program as a basis. Difference is that the robot begand
目录
第1章 电动机的选择计算 —————————————————————————----2
第2章 传动装置运动、动力参数计 ———————————————————————3
第3章 齿轮及V带传动设计 ——————————————————————————4
第4章 轴的设计及校核计算 ——————————————————————————7
第5章 滚动轴承选择与寿命校核————————————————————————18
第6章 键连接的选择及校核计算————————————————————————20
第7章 减速器的附件及其说明————————————————————————-20
第8章 箱体结构设计————————————————————————————-20
第9章 联轴器的选择 ————————————————————————————20
第10章 润滑与密封—————————————————————————————22
参考文献——————————————————————————————————-22
第1章 电动机的选择计算
1.1 电动机类型和结构的选择
因为本传动的工作状况是:中等冲击载荷、单向旋转。所以选用常用的封闭式Y系列三相异步电动机。
1.2 电动机功率的选择
1.2.1 传动装置的总功率
由设计手册得,
V型带传动的效率:0.96
滚动轴承(一对)的效率:0.98
圆柱齿轮(闭式)的效率:0.97
齿轮联轴器的效率:0.99
绞车卷筒的效率为:0.96
η=ηv带η2轴承η齿轮η联轴器η卷筒=0.96*0.982*0.97*0.99*0.96=0.867
1.2.2 电动机所需的工作功率:
1.3 确定电动机转速
计算卷筒的工作转速:
按手册推荐的传动比合理范围,取圆柱齿轮传动二级减速器传动比范围,作为总传动比范围,即I1 =8~40,故电动机转速的可选范围为:
n筒=(8~40)×76=608~3040r/min
符合这一范围的同步转速有750、1000、和1500r/min。
根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传动比方案:通过综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,选择n=750r/min 。
1.4 电动机型号的确定
根据以上选用的电动机类型,及所需的额定功率及同步转速,选定电动机型号为Y132M-8。主要性能:额定功率:3KW,满载转速710r/min,额定转矩2.0。
主要性能如下表:
电动机型号
额定功率/kW
满载转速/(r/min)
起动转矩 额定转矩
最大转矩 额定转矩
Y132M-8
3.0
710
2.0
2.0
第2章 传动装置运动、动力参数计算
2.1 总传动比的确定
由已知数据可知:
2.2 分配各级传动比
查阅资料可知,单级减速器i=3~6合理,由i齿轮=1.4i带,计算得齿轮i齿轮=3.62
则有 ,可得:
2.3 计算各轴转速
电动机轴 :
小齿轮轴 :
大齿轮轴 :
卷 筒 轴 :
2.4 计算各轴的功率
电动机轴 :
小齿轮轴 :
大齿轮轴 :
卷 筒 轴 :
2.5 计算各轴转矩
电动机轴 :
小齿轮轴 :
大齿轮轴 :
卷 筒 轴 :
2.6 传动装置运动、动力参数汇总表
表3.1 传动装置运动、动力参数计算
轴名
参数
电动机轴
小齿轮轴
大齿轮轴
卷筒轴
转速
r/min
710
275.2
76
76
输入功率
P/kw
3
2.37
2.28
2.23
输入转矩T/N·mm
33500
82100
传动比i
2.58
3.62
1.0
效率η
0.92
0.95
0.95
第3章 齿轮及V带传动设计
3.1 v带设计计算
(一)选择普通V带截型
每天工作8小时,查表得:kA=1.1
PC=KAP=1.1×3=3.3KW
由《机械设计基础》课本查表可知:选用A型V带;
(二)确定带轮基准直径,并验算带速
查表: 取dd1=140mm
dd2=i带·dd1·(1-0.02)=2.58×140×0.98=354mm
带速V:V=πdd1n1/60×1000
=π×140×710/(60×1000)
=5.2m/s
在5~25m/s范围内,带速合适。
(三)验算传动比
i带=2.58,i计算=dd2/dd1·(1-0.02)=2.57
传动比误差=(2.58-2.57)/2.58=0.38%<5%(允许)
(四)确定带长和中心矩
根据课本公式得
0.7(dd1+dd2)≤a0≤2(dd1+dd2)
0.7(140+354)≤a0≤2×(140+354)
所以有:354.8mm≤a0≤988mm
初步取a0 =450mm
由课本公式(14-15)得:
L0=2a0+1.57(dd1+dd2)+(dd2-dd1)/4a0=1701.4mm
查表,对A型带选用:Ld=1800mm
实际中心距a≈a0+Ld-L0/2=450+(1800-1701.4)/2=499.3mm
取a=500mm
(五)验算小带轮包角
α1=1800-(dd2-dd1)/a×57.30
=1800-(354-140)/500×57.30
=155.440>1200(适用)
(六)确定带的根数
由课本查表可得: P0=1.41KW △P0=0.09KW Kα=0.93 KL=1.01
Z=PC/P’=PC/(P1+△P1)KαKL
=3.3/(1.41+0.09) ×0.93×1.01
=2.34
取Z=3,即采用三根V带
(七)计算轴上压力
查得q=0.1kg/m,单根V带的初拉力:
F0=500PC/ZV(2.5/Kα-1)+qV2
=[500×3.3/3×5.2×(2.5/0.93-1)+0.1×5.22]N=181.26N
则作用在轴承的压力FQ:
FQ=2ZF0sinα1/2=2×3×181.26sin155.44/2=1060.6N
3.2齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,且为闭式齿轮传动,所以齿轮采用软齿面。小齿轮选用45号碳素钢调质,齿面硬度为236HBS。大齿轮选用45号钢正火,齿面硬度190HBS;齿轮选择8级精度,齿面精糙度Ra≤1.6~3.2μm
(2)按齿面接触疲劳强度设计
齿轮材料及其力学性能
材料
牌号
热处理
方式
硬度
接触疲劳极限
弯曲疲劳极限
45
调质
197~286HBS
550~620
410~480
由d1≥76.6(kT1(u+1)/φdu[σH]2)1/3
确定有关参数如下:传动比i齿=3.62
取小齿轮齿数Z1=25,则大齿轮齿数:
Z2=iZ1=3.62×25=90.5,取Z2=90
实际传动比i0=90/25=3.6
传动比误差:
(i-i0)/i=(3.62-3.6)/3.62=0.552%<2.5% (符合)
齿数比:u=3.6
取φd=1.0
(3)转矩T1
T1=9.55×106×P/n1=9.55×106×2.37/275.2 N·mm =8.21×104N·mm
(4)载荷系数k:取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim/SH
σHlim1=570MPa σHlim2=390MPa
σFlim1=220MPa σHFlim2=170MPa
通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0, SF=1.25
[σH]1=σHlim1/SH=570/1.0Mpa=570Mpa [σH]2=σHlim2/SH=390/1.0Mpa=390Mpa
[σF]1=220/1.25=176MPa [σH]2=170/1.25=136MPa
[σH]min=min[[σH]1 , [σH]2]=390MPa
故得:
d1≥76.6kT1(u+1)/φdu[σH]2)1/3
=76.6[1.2×82100×(3.6+1)/1.0×3.6×3902]1/3mm = 71.9mm
取d1=75mm
模数:m=d1/Z1=75/25=3mm 取标准模数:m=3mm
中心距:a=0.5m(Z1+Z2)=172.5mm
分度圆直径:d1=m Z1=75mm d2=m Z2=270mm
齿宽:b=φdd1=75mm 大齿轮齿宽为75mm,小齿轮齿宽应比大齿轮齿宽长5-10mm,取小齿轮齿宽为80mm
(6)校核齿根弯曲疲劳强度
由齿轮齿数,查表得:YF1=2.72 YF2=2.22
YF1/[σ]F1=0.0155 YF2/[σ]F2=0.0163
由于YF1/[σ]F1< YF2/[σ]F2,故取YF2=2.22代入公式计算
σF=(2kT1/bm2d1)YF2≤[σH]
σF=(2kT1/bm2d1)YF2=25.92<[σ]F2=136MPa
因此齿根弯曲疲劳强度满足使用条件
(7)其他尺寸
小齿轮:da1= d1+2ha1=81mm df=d1-2hf=67.5mm
大齿轮:da2=d2+2ha2=276mm df=d2-2hf2=262.5mm
由于大齿轮分度圆半径较大采用锻造毛坯的腹板式结构
大齿轮的有关尺寸计算如下(需要根据后面轴的设计来确定大齿轮的详细参数):
齿轮结构图如下:
第4章 轴的设计及校核计算
4.1 高速轴的设计计算:
(一)高速轴
4.1.1 按扭矩初算轴径
选用45#调质,硬度197~286HBS,取c=118
考虑有键槽,将直径增大7%,则
因此:d=28mm
4.1.2 轴的结构设计
1) 初定各轴段直径
位置
轴径/mm
说明
大带轮处
28
按传递转矩估算的基本直径
唇形密封处
35
满足大带轮的周向固定要求而设一轴肩,轴肩高度a=(0.07~0.1)d=(0.07~0.1)*28=1.96~2.8,取a=2.5mm。该段轴径应满足油封标准
轴承处
40
轴承所受径向力不大,在考虑价格寿命等因素,选择型号6208深沟球轴承
齿轮处
45
考虑齿轮从左端装入,故齿轮孔径应大于轴承处轴径,并为标准直径
轴环处
52
齿轮右端用轴环定位,按齿轮处轴径d=45mm,由表11.3知,轴环高度a=(0.07~0.1)d=(0.07~0.1)*45=3.15~4.5,取a=3.5mm
右端轴承处
40
此处轴径取型号6208深沟球轴承的内径,即40mm
2) 确定各轴段长度
位置
轴段长度/mm
说明
齿轮处
78
已知齿轮轮毂宽度为80mm,为保证套筒能压紧齿轮,此段轴长应略小于齿轮轮毂宽度,故取78mm
右端轴承处
35
此轴段包括四个部分,轴承内圈宽度为18mm;轴承左端面与内机壁的距离为10mm;档油环超出内机壁距离为2mm;剩余档油环长度取5mm;此段轴长度应为18+10+2+5=35mm.
唇形密封处
48
为方便轴承端盖的拆装及对轴承加润滑脂,取轴承盖外端面与左端轴肩的间距为10mm;由减速器及轴承盖的机构设计,取轴承左端面与轴承盖外端面的间距(即轴承盖的总宽度)为38mm。故该轴段的长度为10+38=48mm
大带轮处
45
已知大带轮轮毂宽度为50mm,为保证轴端挡圈能压紧大带轮,此段轴长应略小于大带轮长度,故取45mm
轴环处
5
轴环宽度b=1.4a=1.4*3.5=4.9mm,取b=5mm
左端轴承处
42
轴承宽度为18mm,轴承右端面至内机壁距离为10mm,档油环超出内机壁2mm,档油环右侧至右端轴肩距离为12mm,故取18+10+2+12=42mm
齿轮及联轴器均采用A型普通平键,其中齿轮处:键14×9×70GB/ 1096-2003;大带轮处为:键8×7×40 GB/ 1096-2003。
3)高速轴强度校核计算
1. 轴的受力分析
1) 轴传递的转矩
2) 求轴上传动件作用力
Ø 带轮传动作用在高速轴上的压力为:
FQ=2ZF0sinα1/2=2×3×181.26sin155.44/2=1060.6N
将FQ分解至水平面FQH和竖直面FQV内,小带轮与大带轮之间的V带为倾斜状态,与竖直面成82.2度,由几何关系可知:
FQH=FQsin82.2=1060.6×sin82.2=1050.8N
FQV=FQcos82.2=1060.6×cos82.2=143.9N
Ø 齿轮上的圆周力
齿轮上的径向力
2. 确定轴的跨距
左右轴承支反力力作用点距齿轮力作用点距离均为71mm,大带轮力作用点距齿轮力作用点距离为150.5mm。
3. 按当量弯矩校核轴的强度
1) 作轴的空间受力简图
2) 作水平面受力图及弯矩图
对B点取矩得:
得
对D点取矩得:
得
Ø 水平受力图
Ø 弯矩图
3) 作垂直面受力图及弯矩图
对B点取矩:
得:
对D点取矩:
得:
Ø 垂直受力图
Ø 弯矩图
4) 作合成弯矩图
5) 作转矩T图
6) 作当量弯矩图
7) 按当量弯矩校核轴的强度
对于45钢,=55MPa
齿轮中心截面为危险截面,因此校核齿轮中心截面
9.64MPa<=55MPa
故高速轴强度能满足要求。
(二)低速轴
考虑有键槽,将直径增大3%,则有
取d=38mm
1)初定各轴段直径
位置
轴径/mm
说明
联轴器处
38
按传递转矩估算的基本直径
唇形密封处
45
满足联轴器的周向固定要求而设一轴肩,轴肩高度a=(0.07~0.1)d=(0.07~0.1)*38=2.66-3.8mm,取a=3.5mm。该段轴径应满足油封标准
轴承处
50
轴承所受径向力不大,在考虑价格寿命等因素,选择型号6210深沟球轴承
齿轮处
52
考虑齿轮从左端装入,故齿轮孔径应大于轴承处轴径,并为标准直径
轴环处
60
齿轮右端用轴环定位,按齿轮处轴径d=52mm,由表11.3知,轴环高度a=(0.07~0.1)d=(0.07~0.1)*52=3.64~5。2,取a=4mm
右端轴承处
50
此处轴径取型号6210深沟球轴承的内径,即50mm
2)确定各轴段长度
位置
轴段长度/mm
说明
齿轮处
73
已知齿轮轮毂宽度为75mm,为保证套筒能压紧齿轮,此段轴长应略小于齿轮轮毂宽度,故取73mm
右端轴承处
37
此轴段包括四个部分,轴承内圈宽度为20mm;轴承左端面与内机壁的距离为10mm;档油环超出内机壁距离为2mm;剩余档油环长度取5mm;此段轴长度应为20+10+2+5=37mm.
唇形密封处
49
为方便轴承端盖的拆装及对轴承加润滑脂,取轴承盖外端面与左端轴肩的间距为10mm;由减速器及轴承盖的机构设计,取轴承左端面与轴承盖外端面的间距(即轴承盖的总宽度)为39mm。故该轴段的长度为10+39=49mm
联轴器处
82
已知联轴器轴孔长度为82mm,故取82mm
轴环处
10
轴环宽度b=1.4a=1.4*4=5.6mm,取b=10mm
左端轴承处
49
轴承宽度为20mm,轴承右端面至内机壁距离为10mm,档油环超出内机壁2mm,档油环右侧至右端轴肩距离为12mm,套筒长度为5mm,故取20+10+2+12+5=49mm
齿轮及联轴器均采用A型普通平键,其中齿轮处:键16×10×63GB/ 1096-2003;联轴器处为:键10×8×70 GB/ 1096-2003。
3) 低速轴强度校核计算
1.轴的受力分析
轴传递的转矩
2.求轴上传动件作用力
Ø 齿轮上的圆周力
齿轮上的径向力
3.确定轴的跨距
左右轴承支反力力作用点距齿轮力作用点距离均为74.5mm,联轴器力作用点距齿轮力作用点距离为173.5mm。
4.按当量弯矩校核轴的强度
Ø 作轴的空间受力简图
Ø 作水平面受力图及弯矩图
对B点取矩得:
得
对D点取矩得:
得
水平面受力图:
弯矩图:
Ø 作垂直面受力图及弯矩图
垂直受力图:
弯矩图:
Ø 作合成弯矩图
Ø 作转矩T图
Ø 作当量弯矩图
4) 按当量弯矩校核轴的强度
对于45钢,=55MPa
齿轮中心截面为危险截面,因此校核齿轮中心截面
8.51MPa<=55MPa
故低速轴强度能满足要求。
第5章 滚动轴承选择与寿命校核
5.1 高速轴轴承的校核
(1) 轴承型号。根据工作状况试选用深沟球轴承,该段轴径为40mm,选用6208,由指导书表12.1查得,。
(2) 计算当量动载荷。由于不受轴向力,故径向载荷系数,轴向载荷系数,考虑轴承工作条件为轻微震动,查表得载荷系数,则当量动载荷为
由轴的设计计算部分可知,左端轴承受径向载荷最大
(3) 校核轴承寿命
轴承寿命为
满足要求,故选择6208型号轴承。
5.2 低速轴轴承的校核
(1) 轴承型号。根据工作状况试选用深沟球轴承,该段轴径为50mm,选用6210,由指导书表12.1查得,。
(2) 计算当量动载荷。工作情况与上述轴承一样,故径向载荷系数,轴向载荷系数,查得载荷系数,则当量动载荷为
由轴的设计计算部分可知,左右两处轴承受径向载荷相同,
(3) 校核轴承寿命
轴承寿命为
满足要求,故选择6210型号轴承。
第6章 键连接的选择及校核计算
键连接的选择及校核计算选择
代 号
直径
(mm)
工作长度(mm)
转矩
(N·mm)
极限应力
(MPa)
高速轴
键8×7×40
28
32
82100
52.36
键14×9×70
45
56
82100
14.48
低速轴
键18×8×70
38
52
72.12
键16×10×63
52
47
46.64
由于键采用静联接,中等冲击,所以许用挤压应力为,所以上述键皆安全。
第7章 减速器的附件及其说明
通 气 器 : 由于在矿山环境中使用,选取网状通气器,采用M48×1.5;
油面指示器 : 选用杆式游标M12;
放 油 螺塞 : 选用外六角油塞及封油圈M16×1.5。
第8章 箱体结构设计
窥视孔和窥视孔盖在减速器上部可以看到传动零件啮合处要开窥视孔,以便检查齿面接触斑点和赤侧间隙,了解啮合情况。润滑油也由此注入机体内。窥视孔上有盖板,以防止污物进入机体内和润滑油飞溅出来。
(1) 放油螺塞减速器底部设有放油孔,用于排出污油,注油前用螺塞赌注。
(3)油标油标用来检查油面高度,以保证有正常的油量。油标有各种结构类型,有的已定为国家标准件。
(4)通气器减速器运转时,由于摩擦发热,使机体内温度升高,气压增大,导致润滑油从缝隙向外渗漏。所以多在机盖顶部或窥视孔盖上安装通气器,使机体内热涨气自由逸出,达到集体内外气压相等,提高机体有缝隙处的密封性能。
(5)启盖螺钉机盖与机座结合面上常涂有水玻璃或密封胶,联结后结合较紧,不易分开。为便于取盖,在机盖凸缘上常装有一至二个启盖螺钉,在启盖时,可先拧动此螺钉顶起机盖。在轴承端盖上也可以安装启盖螺钉,便于拆卸端盖。对于需作轴向调整的套环,如装上二个启盖螺钉,将便于调整。
(6)定位销 为了保证轴承座孔的安装精度,在机盖和机座用螺栓联结后,镗孔之前装上两个定位销,孔位置尽量远些。如机体结构是对的,销孔位置不应该对称布置。
(7)调整垫片调整垫片由多片很薄的软金属制成,用一调整轴承间隙。有的垫片还要起调整传动零件轴向位置的作用。
(8)环首螺钉、吊环和吊钩在机盖上装有环首螺钉或铸出吊环或吊钩,用以搬运或拆卸机盖。
(9)密封装置 在伸出轴与端盖之间有间隙,必须安装密封件,以防止漏油和污物进入机体内。密封件多为标准件,其密封效果相差很大,应根据具体情况选用。
(10)箱体结构尺寸选择如下表:
名称
符号
尺寸(mm)
机座壁厚
δ
8
机盖壁厚
δ1
8
机座凸缘厚度
b
12
机盖凸缘厚度
b1
12
机座底凸缘厚度
P
20
地脚螺钉直径
df
20
地脚螺钉数目
n
4
轴承旁联结螺栓直径
d1
16
机盖与机座联接螺栓直径
d2
10
联轴器螺栓d2的间距
l
180
轴承端盖螺钉直径
d3
10
窥视孔盖螺钉直径
d4
8
定位销直径
d
8
df,d1, d2至外机壁距离
C1
26, 22, 16
df, d2至凸缘边缘距离
C2
20, 14
轴承旁凸台半径
R1
24, 20, 14
凸台高度
h
根据低速级轴承座外径确定,以便于扳手操作为准
外机壁至轴承座端面距离
L1
C1+C2+(5~8)mm
大齿轮顶圆与内机壁距离
△1
10
齿轮端面与内机壁距离
△2
10
机盖、机座肋厚
m1 ,m
7, 7
轴承端盖外径
D2
130, 140
轴承端盖凸缘厚度
e
10
轴承旁联接螺栓距离
S
尽量靠近,以Md1和Md2互不干涉为准,一般s=D2
第9章 联轴器的选择
带式运输机的工作环境为矿山,中等冲击,两轴的有径向、轴向、角位移和这些位移的综合位移,因而选择能够补偿这些位移的挠性联轴器。此处的轴径为38mm,转速为76r/min。查表可得载荷系数为1.25~1.5,取K=1.5(弹性联轴器取最小值)。计算转矩
选用LH3型弹性柱销联轴器,其主要参数如下表:
型号
公称转矩/(N)
许用转速/(r/min)
轴孔直径/mm
轴孔长度Y型/mm
D/mm
质量/Kg
转动惯量/(Kg)
许用补偿量/mm
铁
钢
径向
轴向
角向
LH3
630
5000
5000
38
82
160
8
0.6
0.15
第10章 润滑与密封
1.齿轮的润滑
采用浸油润滑,低速级周向速度为1.10m/s,为了避免齿轮搅油时沉积的金属微粒泛起,齿顶到油池底部的距离应大于30~50mm,取为40mm。
2.滚动轴承的润滑
轴承采用脂润滑,安装零件时,应有挡油环。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
4. 密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为JB/ZQ4606-1986。
轴承端盖结构尺寸按用其定位的轴承的外径决定。
参考文献
[1] 宋宝玉.机械设计课程设计指导书[M].北京:高等教育出版社,2006.
[2] 宋宝玉编.机械设计基础[M].3版.哈尔滨:哈尔滨工业大学出版社,2006.
[3] 吴宗泽等主编.机械设计课程设计手册[M].4版.北京高等教育出版社,2012.
全面落实企业主体责任;持续强化“两重点一重大”、重点地区和特殊作业等重点环节监管,遏制较大以上事故,保持事故总量继续下降,推动两个行业领域安全生产形势持续稳定好转。manipulator control mode and programmable controllers introduction 2.1 Select discussion with manipulator control 2.1.1 classification of control relays and discrete electronic circuit can control old industrial equipment, but also more common. Mainly these two relatively cheap and you can meet the old-fashioned, simple (or simple) industrial equipment. So he can see them now, however these two control modes (relay and discrete electronic circuits) are these fatal flaws: (1) cannot adapt to the complex logic control, (2) only for the current project, the lack of compatibility and (3) not reforming the system with equipment improvements. Spring for the development of China's modern industrial automation technology the substantial increase in the level of industrial automation, completed the perfect relay of the computer too much. In terms of controlling the computer showed his two great advantages: (1) each of the hardware can be installed on one or more microprocessors; (2) the official designer of the software writing content control is all about. Now in several ways in the context of industrial automation can often be seen in three ways: (1) Programmable Logical Controller (referred to as IPC); (2) Distributed Control System (DCS for short), and (3) the Programmable Logical Controller (PLC for short). 2.1.2 PLC and the IPC and DCS contrast contrast 1, each of the three technologies of origins and development requirements for fast data processing makes
展开阅读全文