收藏 分销(赏)

2009年海南省高考数学试题及答案(理科).doc

上传人:Fis****915 文档编号:481525 上传时间:2023-10-17 格式:DOC 页数:7 大小:1.16MB
下载 相关 举报
2009年海南省高考数学试题及答案(理科).doc_第1页
第1页 / 共7页
2009年海南省高考数学试题及答案(理科).doc_第2页
第2页 / 共7页
2009年海南省高考数学试题及答案(理科).doc_第3页
第3页 / 共7页
2009年海南省高考数学试题及答案(理科).doc_第4页
第4页 / 共7页
2009年海南省高考数学试题及答案(理科).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、2009年普通高等学校招生全国统一考试(海南卷)数学(理工农医类)第I卷一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。(1) 已知集合,则 (A) (B) (C) (D) (2) 复数(A)0 (B)2 (C)-2i (D)2(3)对变量x, y 有观测数据理力争(,)(i=1,2,,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,,10),得散点图2. 由这两个散点图可以判断。(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关(C)变量x 与y 负相关,u 与v 正相关 (D)变量x

2、 与y 负相关,u 与v 负相关(4)双曲线-=1的焦点到渐近线的距离为(A) (B)2 (C) (D)1(5)有四个关于三角函数的命题:xR, += : x、yR, sin(x-y)=sinx-siny: x,=sinx : sinx=cosyx+y=其中假命题的是(A), (B), (C), (D),(6)设x,y满足(A)有最小值2,最大值3 (B)有最小值2,无最大值(C)有最大值3,无最小值 (D)既无最小值,也无最大值(7)等比数列的前n项和为,且4,2,成等差数列。若=1,则=(A)7 (B)8 (C)15 (D)16(8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,

3、则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)异面直线所成的角为定值(9)已知O,N,P在所在平面内,且,且,则点O,N,P依次是的 (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂心 (D)外心 重心 内心(注:三角形的三条高线交于一点,此点为三角型的垂心)(10)如果执行右边的程序框图,输入,那么输出的各个数的合等于 (A)3 (B) 3.5 (C) 4 (D)4.5(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为(A)48+12 (B)48+24 (C)36+12 (D)36+24(12)用mina,b,c表示a,b,c三个数中的最

4、小值 设f(x)=min, x+2,10-x (x 0),则f(x)的最大值为(A)4 (B)5 (C)6 (D)7第II卷二、填空题;本大题共4小题,每小题5分。(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_.(14)已知函数y=sin(x+)(0, -)的图像如图所示,则 =_ (15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有_种(用数字作答)。(16)等差数列前n项和为。已知+-=0,=38,则m=_三、解答题:解答应写出说明文字,证明过程或演算步骤

5、。(17)(本小题满分12分)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算M,N间的距离的步骤。(18)(本小题满分12分)某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。(I)求甲、乙两工人都被抽

6、到的概率,其中甲为A类工人,乙为B类工人;w.w.w.k.s.5.u.c.o.m (II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.表1:生产能力分组人数4853表2:生产能力分组人数 6 y 36 18(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m (ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u

7、.c.o.m (19)(本小题满分12分)如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 ()求证:ACSD;w.w.w.k.s.5.u.c.o.m ()若SD平面PAC,求二面角P-AC-D的大小()在()的条件下,侧棱SC上是否存在一点E,w.w.w.k.s.5.u.c.o.m 使得BE平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。(20)(本小题满分12分) 已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.()求椭圆C的方程;()若P为椭圆C上的动点,M为过P且垂直于x轴的直线上

8、的点,=,求点M的轨迹方程,并说明轨迹是什么曲线。w.w.w.k.s.5.u.c.o.m (21)(本小题满分12分)已知函数(I) 如,求的单调区间;(II) 若在单调增加,在单调减少,证明6. w.w.w.k.s.5.u.c.o.m 请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。(22)本小题满分10分)选修4-1:几何证明选讲w.w.w.k.s.5.u.c.o.m 如图,已知的两条角平分线和相交于H,F在上,且。(I) 证明:B,D,H,E四点共圆:(II) 证明:平分。w.w.w.k.s.5

9、.u.c.o.m (23)(本小题满分10分)选修44:坐标系与参数方程。 已知曲线C: (t为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。w.w.w.k.s.5.u.c.o.m (24)(本小题满分10分)选修4-5:不等式选讲如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.(1)将y表示成x的函数;(2)要使y的值不超过70,x 应该在什么范围内取值?w.w.w.k.s.5

10、.u.c.o.m 2009年普通高校招生全国统一考试理数数学试题参考答案一 选择题(1) A (2) D (3) C (4) A (5) A (6) B(7) C (8) D (9) C (10) B (11) A (12) C二填空题(13) (14) (15) 140 (16) 10三解答题(17) 解:方案一:需要测量的数据有:A 点到M,N点的俯角;B点到M,N的俯角;A,B的距离 d (如图)所示) . .3分 第一步:计算AM . 由正弦定理; 第二步:计算AN . 由正弦定理; 第三步:计算MN. 由余弦定理 .方案二:需要测量的数据有: A点到M,N点的俯角,;B点到M,N点的

11、府角,;A,B的距离 d (如图所示). 第一步:计算BM . 由正弦定理;第二步:计算BN . 由正弦定理;w.w.w.k.s.5.u.c.o.m 第三步:计算MN . 由余弦定理(18) 解:()甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为w.w.w.k.s.5.u.c.o.m . ()(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名. 故 ,得, ,得 . 频率分布直方图如下 从直方图可以判断:B类工人中个体间的关异程度更小 . (ii) , , A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生

12、产能力的平均数的会计值分别为123,133.8和131.1 .w.w.w.k.s.5.u.c.o.m (19)解法一: ()连BD,设AC交BD于O,由题意。在正方形ABCD中,所以,得. ()设正方形边长,则。又,所以, 连,由()知,所以, w.w.w.k.s.5.u.c.o.m 且,所以是二面角的平面角。由,知,所以,即二面角的大小为。 ()在棱SC上存在一点E,使由()可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.解法二: ();连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。 设底面边长为,则高。 于

13、是 w.w.w.k.s.5.u.c.o.m 故 从而 ()由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为 ()在棱上存在一点使. 由()知是平面的一个法向量, 且 设 w.w.w.k.s.5.u.c.o.m 则 而 即当时,而不在平面内,故(20)解:()设椭圆长半轴长及半焦距分别为,由已知得,w.w.w.k.s.5.u.c.o.m 所以椭圆的标准方程为()设,其中。由已知及点在椭圆上可得。整理得,其中。(i)时。化简得 w.w.w.k.s.5.u.c.o.m 所以点的轨迹方程为,轨迹是两条平行于轴的线段。(ii)时,方程变形为,其中当时,点的轨迹为中心在

14、原点、实轴在轴上的双曲线满足的部分。当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;当时,点的轨迹为中心在原点、长轴在轴上的椭圆;(21)解:()当时,故 w.w.w.k.s.5.u.c.o.m 当当从而单调减少.()由条件得:从而因为所以 将右边展开,与左边比较系数得,故又由此可得于是 w.w.w.k.s.5.u.c.o.m (22)解: ()在ABC中,因为B=60,所以BAC+BCA=120.因为AD,CE是角平分线,所以HAC+HCA=60,故AHC=120.于是EHD=AHC=120.因为EBD+EHD=180,所以B,D,H,E四点共圆.()连结BH,则BH为ABC的平分线,得HBD=30由()知B,D,H,E四点共圆,所以CED=HBD=30.又AHE=EBD=60,由已知可得EFAD,可得CEF=30.所以CE平分DEF. w.w.w.k.s.5.u.c.o.m (23)解:()为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.()当时,为直线从而当时,(24)解: () ()依题意,x满足 解不等式组,其解集为【9,23】所以 w.w.w.k.s.5.u.c.o.m - 7 -

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服