收藏 分销(赏)

计量经济学模型分析方法.doc

上传人:精*** 文档编号:4814795 上传时间:2024-10-13 格式:DOC 页数:14 大小:425.54KB 下载积分:8 金币
下载 相关 举报
计量经济学模型分析方法.doc_第1页
第1页 / 共14页
计量经济学模型分析方法.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
计量经济学上机模型分析方法总结 一、随机误差项的异方差问题的检验与修正 模型一: Dependent Variable: LOG(Y) Method: Least Squares Date: 07/29/12 Time: 09:03 Sample: 1 31 Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob.   C 1.602528 0.860978 1.861288 0.0732 LOG(X1) 0.325416 0.103769 3.135955 0.0040 LOG(X2) 0.507078 0.048599 10.43385 0.0000 R-squared 0.796506     Mean dependent var 7.448704 Adjusted R-squared 0.781971     S.D. dependent var 0.364648 S.E. of regression 0.170267     Akaike info criterion -0.611128 Sum squared resid 0.811747     Schwarz criterion -0.472355 Log likelihood 12.47249     F-statistic 54.79806 Durbin-Watson stat 1.964720     Prob(F-statistic) 0.000000 (一)异方差的检验 1、GQ检验法 模型二: Dependent Variable: LOG(Y) Method: Least Squares Date: 07/29/12 Time: 09:19 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob.   C 3.744626 1.191113 3.143804 0.0119 LOG(X1) 0.344369 0.082999 4.149077 0.0025 LOG(X2) 0.168904 0.118844 1.421228 0.1890 R-squared 0.669065     Mean dependent var 7.239161 Adjusted R-squared 0.595524     S.D. dependent var 0.133581 S.E. of regression 0.084955     Akaike info criterion -1.881064 Sum squared resid 0.064957     Schwarz criterion -1.759837 Log likelihood 14.28638     F-statistic 9.097834 Durbin-Watson stat 1.810822     Prob(F-statistic) 0.006900 模型三: Dependent Variable: LOG(Y) Method: Least Squares Date: 07/29/12 Time: 09:20 Sample: 20 31 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob.   C -0.353381 1.607461 -0.219838 0.8309 LOG(X1) 0.210898 0.158220 1.332942 0.2153 LOG(X2) 0.856522 0.108601 7.886856 0.0000 R-squared 0.878402     Mean dependent var 7.769851 Adjusted R-squared 0.851381     S.D. dependent var 0.390363 S.E. of regression 0.150490     Akaike info criterion -0.737527 Sum squared resid 0.203824     Schwarz criterion -0.616301 Log likelihood 7.425163     F-statistic 32.50732 Durbin-Watson stat 2.123203     Prob(F-statistic) 0.000076 进行模型二和模型三两次回归,目的仅是得到出去中间7个样本点以后前后各12个样本点的残差平方和RSS1和RSS2,然后用较大的RSS除以较小的RSS即可求出F统计量值进行显著性检验。 2、怀特检验法(White) 模型一的怀特残差检验结果: White Heteroskedasticity Test: F-statistic 4.920995     Probability 0.004339 Obs*R-squared 13.35705     Probability 0.009657 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/29/13 Time: 09:04 Sample: 1 31 Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob.   C 3.982137 2.882851 1.381319 0.1789 LOG(X1) -0.579289 0.916069 -0.632364 0.5327 (LOG(X1))^2 0.041839 0.066866 0.625710 0.5370 LOG(X2) -0.563656 0.203228 -2.773514 0.0101 (LOG(X2))^2 0.040280 0.013879 2.902173 0.0075 R-squared 0.430873     Mean dependent var 0.026185 Adjusted R-squared 0.343315     S.D. dependent var 0.038823 S.E. of regression 0.031460     Akaike info criterion -3.933482 Sum squared resid 0.025734     Schwarz criterion -3.702194 Log likelihood 65.96898     F-statistic 4.920995 Durbin-Watson stat 1.526222     Prob(F-statistic) 0.004339 一方面,根据上面的Obs*R2=31*0.430873=13.35705>χ2(4),说明存在显著的异方差问题;另一方面,根据下面的辅助回归模型可以看出LOG(X2) 与(LOG(X2))^2均通过了t检验,说明异方差的形式可以用LOG(X2) 与(LOG(X2))^2的线性组合表示,权变量可以简单确定为1/LOG(X2)。 (二)加权最小二乘法(WLS)修正 1、方法原理:具体参见教材。 2、回归结果分析 模型四: Dependent Variable: LOG(Y) Method: Least Squares Date: 07/29/12 Time: 09:06 Sample: 1 31 Included observations: 31 Weighting series: 1/LOG(X2) Variable Coefficient Std. Error t-Statistic Prob.   C 1.478085 0.817610 1.807811 0.0814 LOG(X1) 0.377915 0.096925 3.899044 0.0006 LOG(X2) 0.473471 0.048398 9.782864 0.0000 Weighted Statistics R-squared 0.872646     Mean dependent var 7.423264 Adjusted R-squared 0.863550     S.D. dependent var 0.436598 S.E. of regression 0.161276     Akaike info criterion -0.719639 Sum squared resid 0.728274     Schwarz criterion -0.580866 Log likelihood 14.15440     F-statistic 49.27256 Durbin-Watson stat 2.036239     Prob(F-statistic) 0.000000 Unweighted Statistics R-squared 0.789709     Mean dependent var 7.448704 Adjusted R-squared 0.774688     S.D. dependent var 0.364648 S.E. of regression 0.173088     Sum squared resid 0.838862 Durbin-Watson stat 2.028211 加权修正以后的模型四怀特检验结果如下: White Heteroskedasticity Test: F-statistic 6.555091     Probability 0.000870 Obs*R-squared 15.56541     Probability 0.003661 可以看出并没有消除异方差性,加权修正无效。 下面采用1/abs(e)权变量进行WLS回归,结果如下: 模型五: Dependent Variable: LOG(Y) Method: Least Squares Date: 07/29/12 Time: 09:10 Sample: 1 31 Included observations: 31 Weighting series: 1/ABS(E) Variable Coefficient Std. Error t-Statistic Prob.   C 1.227929 0.297268 4.130708 0.0003 LOG(X1) 0.375748 0.056830 6.611734 0.0000 LOG(X2) 0.510120 0.017781 28.68847 0.0000 Weighted Statistics R-squared 0.999990     Mean dependent var 7.558578 Adjusted R-squared 0.999989     S.D. dependent var 12.31758 S.E. of regression 0.041062     Akaike info criterion -3.455703 Sum squared resid 0.047210     Schwarz criterion -3.316930 Log likelihood 56.56339     F-statistic 1960.131 Durbin-Watson stat 2.487309     Prob(F-statistic) 0.000000 Unweighted Statistics R-squared 0.794514     Mean dependent var 7.448704 Adjusted R-squared 0.779836     S.D. dependent var 0.364648 S.E. of regression 0.171099     Sum squared resid 0.819694 Durbin-Watson stat 2.007122 对加权以后的模型五进行怀特检验如下: White Heteroskedasticity Test: F-statistic 0.199645     Probability 0.936266 Obs*R-squared 0.923778     Probability 0.921125 可以看出,模型已经不再存在异方差问题,模型五可以作为修正以后的最终模型。 二、随机误差项序列相关性问题的检验与修正 模型一: Dependent Variable: Y Method: Least Squares Date: 07/29/12 Time: 09:48 Sample: 1991 2011 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob.   C 178.9755 55.06421 3.250305 0.0042 X 0.020002 0.001134 17.64157 0.0000 R-squared 0.942463     Mean dependent var 922.9095 Adjusted R-squared 0.939435     S.D. dependent var 659.3491 S.E. of regression 162.2653     Akaike info criterion 13.10673 Sum squared resid 500270.3     Schwarz criterion 13.20621 Log likelihood -135.6207     F-statistic 311.2248 Durbin-Watson stat 0.658849     Prob(F-statistic) 0.000000 初始回归模型一经济意义合理,统计指标较为理想,但DW值偏低,模型可能存在序列相关性。 (一)序列相关性的检验方法 1、自回归模型检验法 Dependent Variable: E Method: Least Squares Date: 07/29/12 Time: 09:49 Sample (adjusted): 1992 2011 Included observations: 20 after adjustments Variable Coefficient Std. Error t-Statistic Prob.   E(-1) 0.717080 0.201852 3.552497 0.0021 R-squared 0.398929     Mean dependent var 2.801737 Adjusted R-squared 0.398929     S.D. dependent var 161.7297 S.E. of regression 125.3870     Akaike info criterion 12.54939 Sum squared resid 298716.2     Schwarz criterion 12.59918 Log likelihood -124.4939     Durbin-Watson stat 1.080741 说明模型一的随机误差项至少存在一阶正序列相关性,结合该自回归模型的DW值为1.08,怀疑存在更高阶的序列相关,继续引入e(-2)如下: Dependent Variable: E Method: Least Squares Date: 07/29/12 Time: 09:49 Sample (adjusted): 1993 2011 Included observations: 19 after adjustments Variable Coefficient Std. Error t-Statistic Prob.   E(-1) 1.094974 0.178768 6.125108 0.0000 E(-2) -0.815010 0.199977 -4.075513 0.0008 R-squared 0.692885     Mean dependent var 7.790341 Adjusted R-squared 0.674819     S.D. dependent var 164.5730 S.E. of regression 93.84710     Akaike info criterion 12.02051 Sum squared resid 149723.7     Schwarz criterion 12.11993 Log likelihood -112.1949     Durbin-Watson stat 1.945979 由于e(-2)的t检验显著,说明模型一的随机误差项确实存在二阶正序列相关性,结合该二阶自回归模型的DW值为1.95,基本确定不存在更高阶的序列相关。 Breusch-Godfrey Serial Correlation LM Test: F-statistic 0.888958     Probability 0.431668 Obs*R-squared 1.998924     Probability 0.368077 可以看出二阶自回归模型的随机误差项不存在序列相关性,论证了原模型仅存在二阶序列相关。 2、DW检验法 0<DW<dL 存在正自相关(趋近于0) DL<DW<dU 不能确定 DU<DW<4-dU 无自相关(趋近于2) 3、LM检验法 原理:一方面,根据上面的假设检验结果判断是否存在序列相关性,即根据(n-p)*R2统计量值与卡方检验临界值χ2(P)进行比较,其中n为原模型样本容量,P为选择的滞后阶数,R2为下面辅助回归模型的可决系数。若(n-p)*R2﹥χ2(P),则拒绝不序列相关的原假设,说明模型存在显著的序列相关性;另一方面,结合下面的辅助回归模型中残差滞后变量是否通过t检验及DW值判断序列相关的具体阶数,方法与上面的自回归模型检验法相同。 选择滞后一阶检验: Breusch-Godfrey Serial Correlation LM Test: F-statistic 13.15036     Probability 0.001931 Obs*R-squared 8.865308     Probability 0.002906 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 07/29/12 Time: 09:51 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob.   C -14.24472 43.18361 -0.329864 0.7453 X 0.000714 0.000907 0.786617 0.4417 RESID(-1) 0.763263 0.210477 3.626342 0.0019 R-squared 0.422158     Mean dependent var 1.30E-13 Adjusted R-squared 0.357953     S.D. dependent var 158.1566 S.E. of regression 126.7275     Akaike info criterion 12.65352 Sum squared resid 289077.4     Schwarz criterion 12.80274 Log likelihood -129.8619     F-statistic 6.575179 Durbin-Watson stat 1.159275     Prob(F-statistic) 0.007183 说明原模型确实存在一阶序列相关性,结合该辅助回归模型的DW值为1.16,怀疑存在更高阶的序列相关,引入滞后二阶检验如下: Breusch-Godfrey Serial Correlation LM Test: F-statistic 20.49152     Probability 0.000030 Obs*R-squared 14.84303     Probability 0.000598 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 07/29/12 Time: 09:51 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob.   C 14.06463 32.40987 0.433961 0.6698 X -0.000628 0.000742 -0.846303 0.4091 RESID(-1) 1.108488 0.176127 6.293696 0.0000 RESID(-2) -0.918175 0.226004 -4.062643 0.0008 R-squared 0.706811     Mean dependent var 1.30E-13 Adjusted R-squared 0.655072     S.D. dependent var 158.1566 S.E. of regression 92.88633     Akaike info criterion 12.07027 Sum squared resid 146673.8     Schwarz criterion 12.26923 Log likelihood -122.7379     F-statistic 13.66102 Durbin-Watson stat 1.950263     Prob(F-statistic) 0.000087 由于e(-2)的t检验显著,说明模型一的随机误差项确实存在二阶正序列相关性,结合该二阶自回归模型的DW值为1.95,基本确定不存在更高阶的序列相关。 当然可以继续引入滞后三阶检验如下: Breusch-Godfrey Serial Correlation LM Test: F-statistic 12.85743     Probability 0.000157 Obs*R-squared 14.84303     Probability 0.001956 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 07/29/12 Time: 09:52 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob.   C 14.06467 33.40734 0.421005 0.6794 X -0.000628 0.000765 -0.820934 0.4237 RESID(-1) 1.108206 0.271327 4.084401 0.0009 RESID(-2) -0.917559 0.499523 -1.836870 0.0849 RESID(-3) -0.000601 0.431119 -0.001395 0.9989 R-squared 0.706811     Mean dependent var 1.30E-13 Adjusted R-squared 0.633514     S.D. dependent var 158.1566 S.E. of regression 95.74504     Akaike info criterion 12.16551 Sum squared resid 146673.8     Schwarz criterion 12.41421 Log likelihood -122.7379     F-statistic 9.643071 Durbin-Watson stat 1.950030     Prob(F-statistic) 0.000363 可以看出并不存在三阶序列相关。 (二)广义差分法修正 1、方法原理 参考教材自己推导二元线性回归模型存在二阶序列相关时的广义差分模型。 2、上机实现结果分析 模型二: Dependent Variable: Y Method: Least Squares Date: 07/29/12 Time: 09:55 Sample (adjusted): 1992 2011 Included observations: 20 after adjustments Convergence achieved after 8 iterations Variable Coefficient Std. Error t-Statistic Prob.   C 160.0892 182.8917 0.875323 0.3936 X 0.021469 0.003072 6.988975 0.0000 AR(1) 0.730078 0.203352 3.590223 0.0023 R-squared 0.964570     Mean dependent var 958.0450 Adjusted R-squared 0.960402     S.D. dependent var 655.9980 S.E. of regression 130.5388     Akaike info criterion 12.71870 Sum squared resid 289686.3     Schwarz criterion 12.86806 Log likelihood -124.1870     F-statistic 231.4107 Durbin-Watson stat 1.116066     Prob(F-statistic) 0.000000 Inverted AR Roots       .73 由于AR(1)通过t检验,说明模型一确实至少存在一阶序列相关,结合DW值为1.12,怀疑存在更高阶序列相关性, LM检验结果如下: Breusch-Godfrey Serial Correlation LM Test: F-statistic 6.380262     Probability 0.009885 Obs*R-squared 9.193288     Probability 0.010086 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 07/29/12 Time: 09:57 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob.   C 80.86347 145.2643 0.556665 0.5860 X -0.003554 0.002602 -1.365556 0.1922 AR(1) -0.572841 0.437314 -1.309909 0.2099 RESID(-1) 1.029157 0.339541 3.031022 0.0084 RESID(-2) -0.187923 0.598223 -0.314136 0.7577 R-squared 0.459664     Mean dependent var -7.24E-11 Adjusted R-squared 0.315575     S.D. dependent var 123.4773 S.E. of regression 102.1528     Akaike info criterion 12.30313 Sum squared resid 156527.8     Schwarz criterion 12.55207 Log likelihood -118.0313     F-statistic 3.190131 Durbin-Watson stat 2.021
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服