收藏 分销(赏)

BP神经网络预测实例培训资料.doc

上传人:天**** 文档编号:4806227 上传时间:2024-10-13 格式:DOC 页数:4 大小:14KB 下载积分:5 金币
下载 相关 举报
BP神经网络预测实例培训资料.doc_第1页
第1页 / 共4页
BP神经网络预测实例培训资料.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
BP神经网络预测实例 %% 清空环境变量 clc clear %% 训练数据预测数据 data=importdata('test.txt'); %从1到768间随机排序 k=rand(1,768); [m,n]=sort(k); %输入输出数据 input=data(:,1:8); output =data(:,9); %随机提取500个样本为训练样本,268个样本为预测样本 input_train=input(n(1:500),:)'; output_train=output(n(1:500),:)'; input_test=input(n(501:768),:)'; output_test=output(n(501:768),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% BP网络训练 % %初始化网络结构 net=newff(inputn,output_train,10); net.trainParam.epochs=1000; net.trainParam.lr=0.1; net.trainParam.goal=0.0000004; %% 网络训练 net=train(net,inputn,output_train); %% BP网络预测 %预测数据归一化 inputn_test=mapminmax('apply',input_test,inputps); %网络预测输出 BPoutput=sim(net,inputn_test); %% 结果分析 %根据网络输出找出数据属于哪类 BPoutput(find(BPoutput<0.5))=0; BPoutput(find(BPoutput>=0.5))=1; %% 结果分析 %画出预测种类和实际种类的分类图 figure(1) plot(BPoutput,'og') hold on plot(output_test,'r*'); legend('预测类别','输出类别') title('BP网络预测分类与实际类别比对','fontsize',12) ylabel('类别标签','fontsize',12) xlabel('样本数目','fontsize',12) ylim([-0.5 1.5]) %预测正确率 rightnumber=0; for i=1:size(output_test,2) if BPoutput(i)==output_test(i) rightnumber=rightnumber+1; end end rightratio=rightnumber/size(output_test,2)*100; sprintf('测试准确率=%0.2f',rightratio)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服