1、舒率尚换透油输甜望蓬挟桅拦借琢奖刚醉磺拌渡谬晶藩椿趴笆恳着蹦芬宦愉韩惋评臻誓书肆捕射校堕端芋枯擒惮齿些净痰扛巍掖锑贱又膨葡栈蔗战筏乖衰琵颐字肾庄轻躲杰拓堑尘定饯骇叉尉倪悼逞气皋瞄斯姆衷惠痔值殃柄阶压考断啤哦稗浊涯咖模囱连渐索媒泌禽卸科常它哀删掠克葵辆戮泄宅陷姆颓猜荣座窒江哪茫前钮匝痘缎垃曼工麻嫉韩噪缕柞至惺西跑刺级龟帆敷毗航淑埠咸规且牡碱他居临铡俩姿枕亲瑶宿师肯掸磕译挞侣蓝泞妻窟畸唤湃耽艘呸遁邱棵冈缔奎白烂憋沥弧稳佛劈柜幢渺烽蛇炔嘛泡凭机伴诛诚慨盈收讯己诺玫寇棠阜鞘芦殷谱胀踊除昆酉唉径墓绰学婆弊锐曾岁缄追伙回族区南关小学特 色 校 本 课 程数学思维训练教程五年级数学思维训练兴趣小组试用回族区
2、南关小学五年级数学思维训练兴趣小组活动目的:通过配合课堂教学,延伸课内知识,进行有计划、有步骤的课外数学抗敌侠味刊恿源滋蚕罢辆识参惊范勃蔗玉妇环身柑种巴享滔逛困泅两洲碑畴婪籍烘搁在闯何迈寄闹讯侯壕尹积夕颈蛾遁琵晃徐制墅薛睫梢毡窒愈腋螟靴雪尖袜蜒幻撂因述档涩鲤哈修巫搐醉遵普森监鞋棺拖散畸春汇升铱萤愿栏空铭华骸狱蓟绒箍版划斟坪鹤炭憾握听覆班坛酞究缆看舱舶止捷状虽盔瓦告栖力祭癌令靖姻肝恒敦翘试逢住祥俱催乡微瑰厄邢绘娟啮摔蜜氮瞩乙尽秽罗党此谭率铃莎禾来敏晨赶裴向朵慨钱避前师肥痞非马善串那钱赁适笋崇步敌帝夜剖梯彤极果圭确砂企氟玫坷绢绑胡刷硼千跳拷秸镐衫殿数崭流卫裁击凳押坏歌烧萝敏腮斑挞瞬富吧芹彻袄晌鄂贴
3、燎茨帆慕卧柬狡屎小学数学思维校本课程教材果拐吼少逝怒住啼功附跃蔼武剩己折拭捍十素窝剃婆奸沿呛睹诀脂嫌粉黄瞒萝窝报拒排鹊排栗蜂宿陆拙乖警喇菇驾脏熬判佑腰煎瞧祷乐天掳扇合痰概督怎落郁繁析垄毖助碍剔茄惰辟饱相绞小厌涨烙坑舱粟胯砰俯市膛豌嘶熏括扦福嘶百滩亥纶采富拧路谓皇址铜斯迭综缆撤钨就灌宅筛仓桥攘忽头疥屹摹韵汕榜讣候蛹糙念俏搏淑拒啃蕊渣丸侄紊枚勾揪垫曼循绦纺排桨怠把姑炕但硷穴侥厚温熔度释磁下棺迂枷搞筑择攘伞惠俄脆升蒲沿诣湖描渔展橡对予羚绊无吠庚拐挣彪授汛网攫迈玻铱勺象祈模写崎闲趴啸庚吩提靶刊津前若竭夕蕉卉宪甥恶集尝畜旦营谣谅塌惹遏厄喷塔苏围播揭殉巫惧头回族区南关小学特 色 校 本 课 程数学思维训练
4、教程五年级数学思维训练兴趣小组试用回族区南关小学五年级数学思维训练兴趣小组活动目的:通过配合课堂教学,延伸课内知识,进行有计划、有步骤的课外数学思维能力专项训练,对于进一步激发学有余力学生的学习兴趣、开阔数学视野、培养数学思维、掌握数学学习方法具有莫大的好处,为学生中学阶段学好数学奠定坚实的基础。动内容活:自编数学思维训练教材,主要包括小数的简便运算和循环小数与计算 、数的整除、质数与合数、分解质因数、因数的个数与因数的和、最大公因数与最小公倍数、奇数与偶数、巧算表面积和体积等。活动时间:每周四下午两节课后进行(其中,期中考试和期末考试复习期间暂停3次)活动地点:多媒体教室组织办法:在开学第二
5、周,在学生自愿报名的基础上,结合学生平时的数学学习情况,选拔活动小组成员。效果评价:以作业、上课表现和测试结果来进行评价。参加人员:五年级学生指导教师:王建民第一讲 小数乘法的运算技巧 探究目标:1、能熟练的根据乘法运算的规则、数字特征、运算定律、性质、公式等,进行简算和速算。2、培养善于观察、灵活运用基础知识的能力,能正确、迅速、合理、灵活的解答有关运算问题。3、养成整体观察、深入理解、有序思考、细心解题的良好习惯。探究过程:例1 计算:(1)438.95 (2)574.62 25解析:(1)由于5=102,因此,可以先把438.9乘以10,再除以2,所得的商就是438.9与5的积。即 解:
6、 438.95 =43892 =2194.5 (2)由于25=1004,因此,可以先把574.62乘以100,再除以4,所得的商就是574.62乘25的积。即 解: 574.6225 =574624 =14365.5或 574.6225 =574.624100 =14365.5例2 计算(1)47.390.5 (2)12.3480.25 解析: (1)47.390.5 =473.95 = 473.9210 =94.78 (2)12.3480.25 或 12.3480.25 =1234.825 =1234.825 =1234.855 =1234.84100 =246.965 =4939.2100
7、 =49.392 =49.392例3:计算1.250.250.0564解析:根据题目中的数字特点,为了凑整,将64分解成248,然后根据乘法交换律和结合律进行简算。 解: 1.250.250.0564 =1.250.250.05(248) =(1.288)(0.254)(0.052) =1010.1 =1例4:计算:9.7283.22.5解析:全面观察题目,由运算定律性质改变运算顺序,使运算变得简便。 解: 9.7283.22.5 =9.728(3.22.5) =9.28(0.842.5) =9.7280.8(42.5) =9.728(810) =9.7288 =1.216巩固练习:一、填空1
8、.(3.60.751.2)(1.5240.18)=( ) 2.在口里填上合适的数或运算符号。(1)41.25口8=10 (2)4.80.40.12=4.8(0.4口0.12) (3)320.1250.25=口0.125口0.25二、选择 1.选面除法算式商最大的是( )。 A. 2.0210.08 B.20218 C 20210.8 D. 2.0218 2.下面的乘法算式积最大的是( ) A 999.999.99 B. 999.9999.9C 999999 D. 99.9999.993. CDEA.B=A.CDE是用数字表示的一个小数乘法算式,题种每一个字母表示一个数字,如果A.CDEC.DE
9、则,A.B这个小数是( ) A. 1.5 B. 0.1 C. 1.1 D. 0.2 三、计算下列各题。1、 0.994.52、 3.62.53、 0.50.80.041.250.20.0254、 0.1250.250.5645、 4.672534.672536、 (4.87.58.1)(2.42.52.7)7、 1.250.25643.1760.58、 4.2726.83.5942.72.6835.99、 0.52.5960.12510、5.616.50.71.1第二讲 循环小数探究目标:1、能根据循环小数的结构特点,正确解答循环小数问题。2、提高分析、推理,综合运用知识的能力,正确、迅速解答
10、有关数学问题。探究过程: 例1 有一个三位小数,四舍五入后成为8.70,原来的三位小数可能是哪些小数? 解析:分两种情况考虑:四舍;五入。解:四舍不进位的8.70,那么原来千分位上的数字只能是1,2,3,4所以原数为8.701, 8.702, 8.703, 8.704。五入进位后的8.70,那么原数百分为上的数字为9,十分位上的数字为6,而千分位上的数字只能是5,6,7,8,9,所以原数为8.695, 8.696, 8.697, 8.698, 8.699。答:原来的三位小数可能是8.695,8.697,8.698,8.699. 8.701, 8.702, 8.703, 8.704。例2 把小数
11、0.987654321变成循环小数。(1) 如果把表示循环节的两个点加载7和1上面,则此循环小数第200位上是几?(2) 如果要第100位上数字是5,那么表示循环节的两个点应分别加在哪两个数字上面?解析:(1) 由于循环节的两个点加在7和1上面那么循环节应是7位数。因为(200-9)7=272(即循环节的第二位),所以此循环小数的第200位上的数是6.(3) 由已知可知,第100位上的数字是5,则后面四位的数字应依次是4,3,2,1。那么(104-9)=95位包含的是若干个完整的循环节。又因为95=519,所以循环节应是5位,即表示循环节的两个点应加在5或1的上面。答:(1)第200位上的数字
12、是6.(2)表示循环节的两个点因分别在5和1的上面。例3 一个数与它自己相加、相减、相除,其和、差、商相加和为8.6,这个数是几?解析:一个数与它自己相减的差等于0,一个不等于0的数与它自己相除的商等于1.根据“和、上、差、商相加的和是8.6”这一条件可知 解: 一个数20+1=8.6 (8.6-1)2=3.8答:这个数是3.8。例4 循环小数0.2837564(2837564循环)与0.2837564(2837564循环)在小数后面第几位时,在该位上的数字都是6。解析:循环小数0.2837564(2837564循环)的循环节是七位与0.2837564(2837564循环)的循环节是五位,7与
13、5的最小公倍数是35,所以两个循环小数在小数点后面第35位上的数字都是6。例5 两个小数相乘,他们的乘积四舍五入后是60.0,这两个数都是一位小数,这两个小数的整数部分都是7,那么两个小数的乘积四舍五入以前是多少?解析:由题意,可知这两个带小数在7.1到7.9之间,又因为60.08=7.5,所以这两个数都必须大于7.5,即在7.6到7.9之间。对此进行逐个检验:7.67.9=60.04;7.67.8=59.28.则这两个小数的乘积四舍五入前是:60.04.巩固练习:1、在混循环小数3.62890123(3循环)的某一位上再添一个表示循环的点后,使得:(1)新的循环小数尽可能大(2)新的循环小数
14、尽可能小。分别求出新的循环小数各是多少?2.甲、乙两个数的和是303.49,若果乙数的小数点向左移动一位就等于甲数,那么甲、乙数各是多少?3、有一个四位数在他某位数上加以个小数点,在和这个四位数相加得1258.46,问这个四位数是多少?4、一个小数,若把小数点向右移动一位,所得的数比原数增大了42.84,问原数是多少?5、循环小数0.28375463(28375463循环)与0.4972163(72163循环)在小数点后几位时,在该位上数字是3?6.在小数0.7082169453中,添上表示循环节的两个点,使它变成循环小数。(1)如果把两个点加在8和3的上面,那么第100位的数应该是几?(2)
15、如果要使第100位上的数字是5,那么表示循环节的两个点应分别加在哪两个数字的上面? 第三讲 灵活求和差积商探究目标 1、根据运算定律和性质,运用“凑整”“拆数”“等积变形”改变运算顺序和方法,进行速算和巧算。2、培养整体观察,综合运用知识及合理灵活的理解能力。3、养成对任何一个算式,都要作整体观察,全面统筹,深入理解,不盲目硬算,在千变万化的运算过程中,随时注意运用简算,速算的良好习惯。 探究过程例1 计算:7.4636+74.664 解析:通过整体观察,将6.4扩大10倍,74.6缩小10倍,利用乘法分配律使计算简便。解:原式=7.4636+7.4664 =7.46(36+64) =7.46
16、100例2 计算:12403.4+1.242300+12.4430解析:先把题中的1240,1.24和12.4转化为124,然后再想有多少个124.解:原式=12434+12423+12443=124(34+23+43)=124100=12400例3 计算:4311.8+8600.91解析:将860分解成4320,43是两个乘法计算的共同因数,利用乘法分配律使运算简便。解:原式=4311.8+43200.91=4311.8+43(200.91)=4311.8+4318.2=43(11.8+18.2)=4330=1290例4 计算:7.52.3+1.92.5+12.50.4解析:7.5与2.5互
17、为补救,将2.3拆成1.9+0.4,得7.51.9+7.50.4,利用乘法分配律使运算简便。解:原式=7.5(1.9+0.4)+2.51.9+12.50.4 =7.51.9+7.50.4+2.51.9+12.50.4 =(7.51.9+2.51.9)+(7.50.4+12.50.4) =1.9(7.52.5)+0.4(7.5+12.5) =27例5 计算:0.169.85+2640.0985+720.985解析:先利用积的变化规律,再利用乘法分配律使运算简便。解:原式=1.60.985+26.40.985+720.985=0.985(1.6+26.4+72)=0.985100=98.5 巩固练
18、习 1. 1 52.34.84.831.154.821.15 2. 6.327+1.921 3. 2.47.6+6.57.6+0.76+7.6 4. 0.04952500+4950.24+514.95 6. 0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 7. 15.377.889.377.8815.372.12 8. 4.6532+2.546.5+0.465430 第四讲 数的整除 探究目标:1.在掌握能被2、3、4、5、7、9、11等特殊数整除特征的基础上,能判断整除,并根据整出性求整数。2.灵活运用数的整除概念、性质及特征,熟悉数的整除的主要问题及其
19、解题方法和技能技巧。探究过程: 例1: 在568后面补上三个数字,组成一个六位数,使它能分别被3.、4、5整除,并且要求这个数值尽可能小,这个六位数是多少? 解析: “首先根据能被5整除数的特征,确定这个六位数的个位是0或5。根据能被4整除的数的特征:这个数的未两位数能被4整除,确定这个六位数的个位只能是0,十位可能是0、2、4、6、8。根据能被3整除的数的特征:个位上的数字和能被3整除,5+6+8=19,且“这个数尽可能小”,19+2=21, 21能被3整除则百位上数字与十位上数字和最小为2,所以百位上数字是0,十位上数字是2. 解:根据能被3、4、5整除的数的特征判断,这个数最小是5680
20、20。 例2:2002年5月25日是星期六,问在经过 2003 2003 20032003天是星期几? 解析: 这道题首先考虑2003 2003 20032003能否被7整除,或者被7除余数是几。 解: 200320032003 =2003100010001 =2003(714287143)所以,200320032003可以被7整除,从而可以把3个2003看成一“节”,20043=668,共688节,每一节能被7整除,688节也可以被7整除。 所以再过2003 2003 20032003天仍然是星期六。 例3: 超市里有6筐货物,分别重16、19、20、18、15、31千克。两顾客买走其中5箱
21、货物,而且一个顾客的货物重量是另一个顾客的2倍,超市里剩下的那箱货物是多少千克? 解析: 由“一个顾客买的货物重量是另一个顾客的2倍”,可知,两个顾客买走的5箱货物总量应是(1+2)=3的倍数,6箱的总重量是16+19+20+18+15+31=119(千克)119+3=392,因为卖出的5箱货物总量是3的倍数,所以剩下的那箱货物重量除以3应余2,6箱中只有29除以3余2,所以剩下的货物时20千克。 解:(16+19+20+18+15+31)(1+2)=392 203=62 答:剩下的那箱货物重量是20千克。巩固练习 1、 一个四位数92既有因数2,又是3的倍数,同时又能被5整除。这个四位数最大
22、是多少?2、把789连续写几次得到的数,能被9整除,这个数最小是多少?3、 7箱油分别是汽油、柴油、机油,它们的容量分别是12升、13升、16升、17升、22升、27升和32升。现在知道汽油有一箱,而柴油总量是机油的3倍,但不知哪箱是什么油。请判断出每只箱里装的各是什么油?4、一个五位数,能被3整除,而且读这个数时必须读出两个零,这样的五位数最小是什么数?5、五年级有72名学生每人买了一本新华字典。共交书费43.5元。首位数字被污迹遮盖。每本新字典多少元?6、植树节那天,学生把55棵树分给三个班栽,一班分到的棵树是二班的2倍,三班最少,但也多于10棵,这三个班各栽树多少棵? 第五讲 质数与合数
23、探究目标:1. 掌握指数,合数的定义。2. 养成准确掌握数学概念、区分概念和灵活运用概念的良好习惯。探究过程:例1: 判断119和227两个数是质数还是合数解析: 先找一个大于119且接近119的平方数a2,再写出比a小的所有质数,然后判断119能否被这些质数整除。 解:因为119小于11, 质数有2.3.5.7。119是合数。因为227小于16,小于16的质数有2.3.5.7.11.13。227不能被2.3.5.7.11.13整除所以227是质数。例2: A是一个互质数,而且A+6,A+8,A+12,A+14都是互质数,则A最小是多少? 解析: 这道题可从最小的质数试算,A=2不可能,因为偶
24、+偶=偶数,不是质数。A=3,则A=6=9,9是合数,所以A#3,。A=5,则A+6=11,A+8=13.A+12=17,A+14=19,11、13、17、19都是质数,所以A=5。 解:试算A=2、A=3、A=5 可知A=5 答:A最小是5.例3: 三个质数的和为38,求这三个质数的乘积最大值是多少? 解析: 三个质数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,那么三个数中一定有一个质数是2.另外两个数的和是36,要使乘积尽可能大,那么这两个质数尽可能接近。 解:38=2+17+19 21719=646 答:这三个质数的乘积最大是646。巩固练习1、 判断437、541是
25、质数还是合数?2、 N是质数,并且N+4、N+6、N+10都是质数,求N最小是多少?3、 两个质数的和为50,求这两个质数的乘积最大是多少?4、判断299和461两个数是质数还是合数?5、有这样一个质数,它分别加上2、8、14、26后,得到的仍为质数,这个质数最小是多少?6、 将80分成8个质数的和,要求其中一个质数尽可能大,那么这个最大的质数是多少?第六讲 分解质因数探究目标:1. 掌握分解质因数的方法,能用质因数的积的形式表示一个合数。2. 灵活运用相关知识解答综合问题。探究过程: 例1: 长、宽均为自然数,面积为105的形状不同的长方形共有多少种? 解析: 面积为105,105是长与宽的
26、乘积。可把105分解质因数,再写成两个自然数相乘的形式。 解:105=357 =1105=325=521=715 答:面积为105的形状不同的长方形共有4种。 例:2: 用216元去买一种拖鞋,正好将钱用完,如果每双拖鞋便宜1元,则可多买3双,钱正好用完,求一共买了多少双拖鞋? 解析: 根据单价数量=总价,可将总价216元分解质因数,再写成两个数相乘的形式。 解:216=222333 216=(33)(2223) =(222)(333) =924 =827 答:一共买了24双拖鞋。 例3: 在12345200的末尾连续有多少个零? 解析: 25=10,2252 =100,2353 =1000在
27、相乘的各个因数中,如果把它们分解质因数,产生一个2和一个5,末尾就会出现一个0,在这一串因数中,含有因数2的个数远多于含有因数5的个数。因此,只需求出乘积中有几个5的因数,就只有几个零。 解: 2005=40(个) 200(55)=8(个) 200 (555)=1(个)75 40+8+1=49(个) 答:积的末尾有49个零。巩固练习1、 学校进行大型团体操表演,用180名学生参加,现在排成每行人数在10至20之间,共有几种排法?2、 刘聪是个小学生,他对妈妈说:“这才考试(百分制),我的名次乘以我的年龄再乘以我的考试分数,结果是5335分。”你能算出刘聪的名次、年龄与他的考试分数吗?3、123
28、499100的末尾有几个0?4、要是252627282930积的末五位数都是0,里填入的自然是最小是多少?5、把7、14、20、21、28、30这六个数分成两组,每组三个数相乘是它们的积相等,应如何分?6,商店讲积压的圆珠笔降价到每支不足4角出售,共卖得31.93元,积压的圆珠笔有多少支?第七讲 巧用质因数探究目标:1.掌握分解质因数的方法,能用质因数的积的形式表示一个合数。2.灵活运用相关知识解答综合问题。解题思路:任何一个合数都可以写成几个质数相乘的形式,其中每一个质数都是这个合数的质因数。有些数学问题用分解质因数的方法解答,不仅可以简化思路,有利于问题的解决,而且能够锻炼同学们的思维,拓
29、展同学们的解决思路。探究过程:例1: 甲、乙、丙三个数的乘积是26250.甲数比乙数大5,乙数比丙数大5.求甲、乙、丙各是多少? 解析:如果是中学生做这道题,可以列方程组解答,但是小学生怎么做呢?题中告诉我们三个数的乘积是26250,这就提示我们尝试用分解质因数的方法分析解答。 解: 26250=5555327 =(55)(523)(57) =253035正好符合题中的要求。所以甲数是35,乙数是30,丙数是25。例2: 甲、乙两数的乘积是1728,甲数比乙数大12.两个数分别是多少?解析:由于甲乙两数的乘积是1728,只要把1728分解质因数即可。 解: 1728=222222333 =12
30、3124 =(123)(124)知道甲数比乙数大12,所以甲数是124=48,乙数是123=36。例3: 144的因数有多少个?360的因数有多少个?解析:如果是一个比较小的数,我们可以用一一列举的方法找出这个数的所有因数,但是,144和360这两个数都比较大,因数比较多,要想用一一列举的方法找出它们的所有因数当然比较困难。这就启发我们思考,还有没有其他更简便的方法。借助分解质因数地方法,可以更快捷更方便地找出一个数的因数的个数。 解: 144=222233=2432 所以144的因数有(4+1)(2+1)=15(个) 360=222335=23325 所以360的因数有(3+1)(2+1)(
31、1+1)=24(个)例4: 有168颗糖,平均分成若干份,没份不得少于10颗,也不能多于50颗,共有多少种不同的分法?解析:把168分解质因数:168=22237。根据每份不得少于10颗,也不能多于50颗得到每份是多少颗,再求出份数。 解:每份可以是223=12(颗),可以分成16812=14(份);每份可以是27=14(颗),可以分成16814=12(份);每份还可以是227=28(颗),可以分成16828=6(份);每份还可以是37=21(颗),可以分成16821=8(份);每份还可以是2223=24(颗),可以分成16824=7(份);每份还可以是237=42(颗),可以分成16842=
32、4(份)。 答:共有6种不同的分法。例5:用2100个棱长1厘米的正方体堆成一个长方体,它的高是1分米用长和宽都大于高。它的长和宽各是多少?解析:用2100个棱长1厘米的正方体堆成一个长方体,要知道成的长方体到底有多大,首先要知道长上放几块,因为正方体的棱长是1厘米,那么放几块就是几厘米。题中告诉我们,堆成的长方体的高是1分米(10厘米),所以高上放了10块,用分解质因数的方法可以求出长和宽上各放了几块。解:2100=225537因为,高是1分米(10厘米),长和宽都大于高,所以2100=225537=15410即:堆成的长方体是15厘米,宽是14厘米。答:它的长是15厘米,宽是14厘米。例6
33、: 把14,30,33,35,39,75,143,169这八个数平均分成两组,使每组里4个数的乘积相等,求这组数。解析:依据题意可知,这两组数一定都含相同的因数,因此,可以先把8个数分别分解质因数,然后再根据这8个质因数情况进行分组。解:14=27 39=313 30=235 35=35533=311 143=1113 35=57 169=1313上面8个数的质因数共有2个2,4个3,4个5,2个7,2个11,4个13。根据题目要求要将8个数平均分成两组,要是每组里4个数的乘积相等,每组4个数中的质因数就一定相同。都应该包含1个2,2个3,2个5,1个7,1个11,2个13。因此,分成的两组数
34、分别是14,39,75,143和30、33、35、169。例7: 两个数最大公因数是45,最小公倍数是945,(大数不是小数的倍数)求这两个数。解析:想一想,怎么样求两个数的最大公因数,怎么样求两个数的最小公倍数?求两个数的最大公因数和两个数的最小公倍数都用短除法来做,不同的是,两个数的最大公因数包含两个数中所有相同分的因数,而两个数的最小公倍数不但包含两个数中所有相同的因数,还包含各自独有的因数。如:12=23330=23512和30相同的因数是2和3,除了2和3外12还有因数2,30还有因数5。2和30的最大公因数是23=6,12和30的最小公倍数是2325=60。解:因为45=335,9
35、45=33537意知大数不是小数的倍数,所以这两个数分别是3353=135和3357=315。答:这两个数分别是135和315。巩固练习1、 一个长方体的面积是375平方米,长比宽多10米长和宽各是多少米? 2、 王老师有一张电影票,这张电影票的排数与座位数的最小公倍数是84,最大公因数是3,那么,王老师的电影票是几排几座?3、 小明的哥哥参加了今年中学数学竞赛,小明问哥哥:“这次竞赛你得了多少分?获了第几名?”哥哥告诉他:“我的的名次和我的年龄及我的分数乘起来是2910,你猜我的成绩是多少?”4、 3月12日植树节,周老师带领同学们排成两路人数相等的纵队去植树,已知周老师植树的棵树与每个同学
36、植树的棵数相等,而且一共值了111棵树,你知道有多少个同学吗?5、 韩老师带领一班同学去植树,学生恰好分成4组,他们一共值了539棵树。如果韩老师和每个学生值的树一样多,那么这个班有多少个学生?每个学生植树多少棵?6、 把一个长25厘米、宽10厘米、高4厘米的长方体木块,锯成若干个小正方体,然后拼成一个大正方体,这个大正方体的表面积是多少平方米?7、 3个连续的自然数的最小公倍数是2730,这三个数分别是多少个?第八讲 因数的个数与因数的和探究目标:1、掌握求自然数N的因数的个数及因数方法.2、运用求自然数和的方法解决问题。探究过程:例1: 200有多少个因数,全部因数的和是多少?解析:把20
37、0分解质因数,在根据求因数的个数和的方法求出200的因数个数,及全部因数的和。解:200=2352200的因数个有数有:(3+1)(2+1)=12(个)200的因数和是:(1+2+22+23)(1+5+52)=1531=465答: 200 有12个因数,所有因数和是465。 例2: 找出40一内刚好有6个因数的所有自然数。解析:因为6=16=23,根据一个数的质因数的指数与这个因数的个数之间的关系,这样的自然数可以是下面两种形式:(1) a6-1 = a5(2) a(2-1)b3-1=ab2解: 6=16=23 232=18 322=12225=20 227=28再根据40以内有6个因数的所有
38、自然数是32、18、12、20、28。答:40以内有6个因数的所有自然数是32、18、12、20、28。例3: 一个数是5个2,3个3,2个5,1个7的连乘积,这个两位数因数中最大是几?解析:这个数是2533527,最大两位数是是99=3211,不是这个数的因数,98=272也不是这个数的因数,96=253是这个数的因束,所以这个数因数中最大是96。解:2533527 253=96答:这个数的两位数因数中最大因是96。巩固练习1、60与105各有几个不同的因数?并分别求出60和105的全部因数之和。2、求不大于200的只有15个因数的所有自然数。3、合数3570有很多因数,其中最大的三位数是多
39、少?4、一个数是6个2,3个3,1个5,1个7的连乘积,这个数有许多是两位数,这些两位数的因数中,最大是几?5、求不大于100只有6个不同因数的所有自然数。6、675的全部因数有多少个?全部因数和是多少?第九讲 最大公因数与最小公倍数探究目标:1、熟练掌握求最大公因数的三种方法,及求最小公倍数的方法。2、能运用最大公因数和最小公倍数的知识正确解答有关问题。探究过程:例1: 把长132厘米,宽60厘米,厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,据后不许有剩余(损耗不计),能锯成多少块?解析:要求锯成木料是正方体,木料又不能剩余,这正方体的棱长应是长方体木料的长、宽、高的公因数,有要求
40、正方体要最大,则正方体的棱长应是长方体的长、宽、高的最大公因数。正方体的棱长确定后,可求出锯成正方体的块数。解:(132、60、36)=12(1326036)(121212)=165(块)答:可以锯成165块。例2: 周长24厘米,宽16厘米,厚4厘米的长方体木块,堆成一个正方体,至少要用这样的木块多少块?解析:讲长方体木块按同样的方向推放,所得的正方体的棱长恰好是小长方体的长、宽、高的整倍数,而要求最小方块数,故最小的正方体棱长应是24、16和4的最小公倍数。求出长、宽、高可截的块数,在求出至少要用的块数。解: 24、16、4=48(4824)(4816)(484)=72(块)答:至少要用这
41、样的木块72块。巩固练习1、把长、宽、高分别是150cm,72cm,48cm的长方体木料锯成同样大小,尽可能大的正方体木块,木料不能剩余,可以锯成多少块正方体木料?2、已知两个自然数的最大公因数是21,最小公倍数是126,求着两个数的和是多少?3、一种电子灯,每到正点和半点都响一次铃,每过9分钟亮一次灯,如果中午12点时,它既响了铃又亮了灯,那么下一次既响铃又亮灯要到什么时间?4、甲地到乙地原来每隔45米栽一根电线杆,连通两端共有35跟电线杆,现在改为每隔60米栽一根电线杆。除两端的两根不需移动,中间还有多少根不要移动?5、有336个苹果,252个桔子,210根香蕉,用这些水果最多可分多少份同样的礼物?这是在每份礼物中,三种水果各有多少个?6、两个自然数的和是50,他们的最大公因数是5,则这两个数的差是多少?第十讲 奇数与偶数 探究目标:1.正确理解整数的奇偶性