收藏 分销(赏)

《工程力学》课后习题解答.doc

上传人:二*** 文档编号:4770075 上传时间:2024-10-12 格式:DOC 页数:58 大小:1.93MB
下载 相关 举报
《工程力学》课后习题解答.doc_第1页
第1页 / 共58页
本文档共58页,全文阅读请下载到手机保存,查看更方便
资源描述
B A O W (a) B A O W F (b) O W (c) A 4日1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。 A O W (d) B A O W (e) B FB FA B O W (a) B A O W F (b) FA FB A O W (c) FA FO A O W (d) FB FA A O W (e) B FB FA 解: 1-2 试画出以下各题中AB杆的受力图。 A W C B (c) D (a) A W C E B (b) A W C D B A B F (d) C A B W (e) C 98 (a) FD FB FE D A W C E B (b) A W C D B FD FB FA (c) A W C B FB FA 解: A B W (e) C FB FA A B F (d) C FB FA 1-3 试画出以下各题中AB梁的受力图。 A W C B (a) W A B C D (c) A B F q D (b) C C A B F W D A’ D’ B’ (d) A B F q (e) A W C B (a) FB FA A B F q D (b) FC FD W A B C (c) FC FB 解: C A B F W D (d) FB FA FD A B F q (e) FBx FBy FA 1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD;(b) 半拱AB部分;(c) 踏板AB;(d) 杠杆AB;(e) 方板ABCD;(f) 节点B。 A B F (a) D C W A F (b) D B (c) F A B D D’ A B F (d) C D W A B C D (e) W A B C (f) 解: A B F (a) D C W FAx FAy FD A F (b) C B FB FA (c) F A B D FB FD A B F (d) C FB FC W A B C D (e) FB FA W B (f) FAB FBC 1-5 试画出以下各题中指定物体的受力图。 (a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。 A B P P (b) A B W (a) F D A B C E F (d) (c) B C W1 W2 F A W A B C C’ D O G (e) FAT 解:(a) A B FBA FBT W FAB FA (b) FC A P C FB B P C F’C FA A B P P FB FN (c) B C W1 W2 F A FCx FCy FAx FAy B W1 F A FAx FAy FBx FBy B C W2 FCx FCy F’Bx F’By F A B C FC FB D C E F FE F’C FF F D A B C E F FE FF FB (d) B C D G FB FC (e) W A B C C’ D O G FOy FOx FC’ A B O W FB FOy FOx 2-2 杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。 C c A B F2 F1 4 3 30o 解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆, FAC FBC C c F2 F1 x y (2) 列平衡方程: AC与BC两杆均受拉。 2-3 水平力F作用在刚架的B点,如图所示。如不计刚架重量,试求支座A和D 处的约束力。 D A a 2a C B 解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形: F FD FA D A C B F FA FD (2) 由力三角形得 2-4 在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。若梁的自重不计,试求两支座的约束力。 A B 45o F 45o C 解:(1) 研究AB,受力分析并画受力图: A B 45o F FB FA C D E α (2) 画封闭的力三角形: F FB FA d c e 相似关系: 几何尺寸: 求出约束反力: 2-6 如图所示结构由两弯杆ABC和DE构成。构件重量不计,图中的长度单位为cm。已知F=200 N,试求支座A和E的约束力。 E D C A B F 6 4 8 6 解:(1) 取DE为研究对象,DE为二力杆;FD = FE E D FE FD (2) 取ABC为研究对象,受力分析并画受力图;画封闭的力三角形: F FA F’D B D A F F’D FA 3 4 3 2-7 在四连杆机构ABCD的铰链B和C上分别作用有力F1和F2,机构在图示位置平衡。试求平衡时力F1和F2的大小之间的关系。 D C A B 60o 30o 45o 90o F1 F2 解:(1)取铰链B为研究对象,AB、BC均为二力杆,画受力图和封闭力三角形; B F1 FBCBC FAB FBCBC FAB F1 45o C F2 FCB FCD F2 FCB FCD (2) 取铰链C为研究对象,BC、CD均为二力杆,画受力图和封闭力三角形; 由前二式可得: 2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。试求在与OD平行的力F作用下,各杆所受的力。已知F=0.6 kN。 z D C B A O 45o 45o 60o y x F FAD FAC FAB 解:(1) 取整体为研究对象,受力分析,AB、AC、AD均为二力杆,画受力图,得到一个空间汇交力系; (2) 列平衡方程: 解得: AB、AC杆受拉,AD杆受压。 3-1 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,c三种情况下,支座A和B的约束力 l/3 A B l (b) M l/2 A B l (a) M θ l/2 A B l (c) M 解:(a) 受力分析,画受力图;A、B处的约束力组成一个力偶; l/2 A B l M FA FB 列平衡方程: (b) 受力分析,画受力图;A、B处的约束力组成一个力偶; l/3 A B l M FA FB 列平衡方程: (c) 受力分析,画受力图;A、B处的约束力组成一个力偶; l/2 A B l M FB FA θ 列平衡方程: 3-2 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束力。 C A B a 3a M2 a a 解:(1) 取BC为研究对象,受力分析,BC为二力杆,画受力图; B FB FC C (2) 取AB为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图; A B F’B FA M2 3-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M1=500 Nm,M2 =125 Nm。求两螺栓处的铅垂约束力。图中长度单位为cm。 M2 M1 A B 50 FB FA 解:(1) 取整体为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图; (2) 列平衡方程: 3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB。各杆重量不计。 O A C B M2 M1 30o 解:(1) 研究BC杆,受力分析,画受力图: C B M2 30o FB FC 列平衡方程: (2) 研究AB(二力杆),受力如图: A B F’B F’A 可知: (3) 研究OA杆,受力分析,画受力图: O A M1 FA FO 列平衡方程: 3-7 O1和O 2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。如两半径为r=20 cm, F1 =3 N, F2 =5 N,AB=80 cm,不计构件自重,试计算轴承A和B的约束力。 B z y x A O F1 F2 F’2 F’1 O1 O2 FBz FAz FAx FBx 解:(1) 取整体为研究对象,受力分析,A、B处x方向和y方向的约束力分别组成力偶,画受力图。 (2) 列平衡方程: AB的约束力: 3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。 A M2 B C D l l l l 解:(1) 取BC为研究对象,受力分析,画受力图; M2 B C FB FC (2) 取DAC为研究对象,受力分析,画受力图; A C D F’C FA FD 画封闭的力三角形; FA F’C FD 解得 A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 (b) A B C 1 2 q =2 (c) M=3 30o A B C D 0.8 0.8 0.8 20 0.8 M=8 q=20 (e) 4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kN×m,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。 解: (b):(1) 整体受力分析,画出受力图(平面任意力系); A B C D 0.8 0.8 0.4 0.5 0.4 0.7 2 FB FAx FA y y x (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 A B C 1 2 q =2 M=3 30o FB FAx FA y y x dx 2´dx x (c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系); A B C D 0.8 0.8 0.8 20 0.8 M=8 q=20 FB FAx FA y y x 20´dx x dx (2) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成a角,求固定端的约束力。 A B aC D b A B aC G b FAx FA y y x MA G 解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒? W B F E 5m 1m 1m A P C O D 解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系); W F E 5m 1m 1m A P C O D FF FE (2) 选F点为矩心,列出平衡方程; (3) 不翻倒的条件; A D aC P a l l h C E B aC 4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。 A D aC P a l l h C E B aC Q Q FB FC y x 解:(1):研究整体,受力分析,画出受力图(平面平行力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究AB,受力分析,画出受力图(平面任意力系); A D aC l h B Q FB FD FAx FA y (4) 选A点为矩心,列出平衡方程; A B C D F FQ 15o 45o 4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少? A D FQ 15o 45o FA x 解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系); (2) 选x轴为投影轴,列出平衡方程; A B C F 15o 45o F’A FCx FC y (3) 研究杠杆AB,受力分析,画出受力图(平面任意力系); (4) 选C点为矩心,列出平衡方程; A B C D a M q a a a 4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kN×m,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。 C D M q a a FC FD x dx qdx y x 解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系); (2) 选坐标系Cxy,列出平衡方程; (3) 研究ABC杆,受力分析,画出受力图(平面平行力系); y x A B C a q a F’C FA FB x dx qdx (4) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 A B C D 3 F=100 q=10 (a) 3 3 4 1 1 A B C D 3 F=50 q=10 (b) 3 3 6 4-17 刚架ABC和刚架CD通过铰链C连接,并与地面通过铰链A、B、D连接,如题4-17图所示,载荷如图,试求刚架的支座约束力(尺寸单位为m,力的单位为 kN,载荷集度单位为 kN/m)。 解: (a):(1) 研究CD杆,它是二力杆,又根据D点的约束性质,可知:FC=FD=0; (2) 研究整体,受力分析,画出受力图(平面任意力系); A B C D 3 F=100 q=10 3 3 4 1 1 FA y FAx FB y x x dx qdx (3) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 C D F=50 q=10 3 3 FC y FCx FD dx qdx x (b):(1) 研究CD杆,受力分析,画出受力图(平面任意力系); (2) 选C点为矩心,列出平衡方程; (3) 研究整体,受力分析,画出受力图(平面任意力系); A B C D 3 F=50 q=10 3 3 6 FA y FAx FB FD dx qdx x x y (4) 选坐标系Bxy,列出平衡方程; 约束力的方向如图所示。 4-18 由杆AB、BC和CE组成的支架和滑轮E支持着物体。物体重12 kN。D处亦为铰链连接,尺寸如题4-18图所示。试求固定铰链支座A和滚动铰链支座B的约束力以及杆BC所受的力。 A B W 1.5m C D E 1.5m 2m 2m x y A B 1.5m C D E 1.5m 2m 2m FA y FAx FB W W 解:(1) 研究整体,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程; (3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系); C D E W W FD y FDx FCB a (4) 选D点为矩心,列出平衡方程; 约束力的方向如图所示。 A B W 600 C D E 800 300 4-19 起重构架如题4-19图所示,尺寸单位为mm。滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。 A B W 600 C D E 800 300 FB y FBx FA y FAx W x y 解:(1) 研究整体,受力分析,画出受力图(平面任意力系); (2) 选坐标系Bxy,列出平衡方程; (3) 研究ACD杆,受力分析,画出受力图(平面任意力系); A C D FA y FAx FD y FDx FC (4) 选D点为矩心,列出平衡方程; (5) 将FAy代入到前面的平衡方程; 约束力的方向如图所示。 A B C D E F F 45o 4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。 解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向; (2) 研究DFE杆,受力分析,画出受力图(平面任意力系); D E F FD y FDx 45o B FF (3) 分别选F点和B点为矩心,列出平衡方程; (4) 研究ADB杆,受力分析,画出受力图(平面任意力系); A B D F’D y F’Dx FA y FAx FB x y (5) 选坐标系Axy,列出平衡方程; 约束力的方向如图所示。 A B C D E M x y z a b h 5-4 一重量W=1000 N的匀质薄板用止推轴承A、径向轴承B和绳索CE支持在水平面上,可以绕水平轴AB转动,今在板上作用一力偶,其力偶矩为M,并设薄板平衡。已知a=3 m,b=4 m,h=5 m,M=2000 N×m,试求绳子的拉力和轴承A、B约束力。 A B C D E M x y z a b h FA y FAx FAz FBz FB y FC W 解:(1) 研究匀质薄板,受力分析,画出受力图(空间任意力系); (2) 选坐标系Axyz,列出平衡方程; 约束力的方向如图所示。 5-5 作用于半径为120 mm的齿轮上的啮合力F推动皮带绕水平轴AB作匀速转动。已知皮带紧边拉力为200 N,松边拉力为100 N,尺寸如题5-5图所示。试求力F的大小以及轴承A、B的约束力。(尺寸单位mm)。 A B C D F 100 100 150 160 200N 100N 20o A B C D F 100 100 150 160 200N 100N 20o FA y FAx FB y FBx x y z 解: (1) 研究整体,受力分析,画出受力图(空间任意力系); (2) 选坐标系Axyz,列出平衡方程; 约束力的方向如图所示。 A B C D 11.2 20o 22 x y z d F E M z x M E 20o F 5-6 某传动轴以A、B两轴承支承,圆柱直齿轮的节圆直径d=17.3 cm,压力角a=20o。在法兰盘上作用一力偶矩M=1030 N×m的力偶,如轮轴自重和摩擦不计,求传动轴匀速转动时的啮合力F及A、B轴承的约束力(图中尺寸单位为cm)。 解: (1) 研究整体,受力分析,画出受力图(空间任意力系); A B C D 11.2 20o 22 x y z d F E M z x M E 20o F FB z FAx FA z FBx FA z FB z FAx FBx (2) 选坐标系Axyz,列出平衡方程; 8-1 试求图示各杆的轴力,并指出轴力的最大值。 F 2F (b) F F (a) (d) 2kN 1kN 2kN (c) 2kN 3kN 3kN 解:(a) (1) 用截面法求内力,取1-1、2-2截面; F F 1 1 2 2 (2) 取1-1截面的左段; F FN1 1 1 (3) 取2-2截面的右段; 2 2 FN2 (4) 轴力最大值: (b) (1) 求固定端的约束反力; F 2F FR 2 1 2 1 (2) 取1-1截面的左段; F 1 1 FN1 (3) 取2-2截面的右段; FR 2 2 FN2 (4) 轴力最大值: (c) (1) 用截面法求内力,取1-1、2-2、3-3截面; 2kN 2kN 3kN 3kN 2 2 3 3 1 1 (2) 取1-1截面的左段; 2kN 1 1 FN1 (3) 取2-2截面的左段; 2kN 3kN 2 2 1 1 FN2 (4) 取3-3截面的右段; 3kN 3 3 FN3 (5) 轴力最大值: (d) (1) 用截面法求内力,取1-1、2-2截面; 2kN 1kN 1 1 2 2 (2) 取1-1截面的右段; 2kN 1kN 1 1 FN1 (2) 取2-2截面的右段; 1kN 2 2 FN2 (5) 轴力最大值: 8-2 试画出8-1所示各杆的轴力图。 解:(a) F FN x (+) F FN x (+) (-) F (b) FN x (+) (-) 3kN 1kN 2kN (c) FN x (+) (-) 1kN 1kN (d) 8-5 图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。 B A F1 F2 C 2 1 2 1 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-6 题8-5图所示圆截面杆,已知载荷F1=200 kN,F2=100 kN,AB段的直径d1=40 mm,如欲使AB与BC段横截面上的正应力相同,试求BC段的直径。 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F=10 kN作用,杆的横截面面积A=1000 mm2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。 F F θ n 粘接面 解:(1) 斜截面的应力: (2) 画出斜截面上的应力 F σθ τθ 8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力[σ]=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。 F A B C 300 450 1 2 解:(1) 对节点A受力分析,求出AB和AC两杆所受的力; F A y x 300 450 FAC FAB (2) 列平衡方程 解得: (2) 分别对两杆进行强度计算; 所以桁架的强度足够。 8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力[σS] =160 MPa,木的许用应力[σW] =10 MPa。 F A B C l 450 1 2 F A B C 300 450 1 2 F A B C 300 450 1 2 解:(1) 对节点A受力分析,求出AB和AC两杆所受的力; A y x 450 FAC FAB F FAB FAC F (2) 运用强度条件,分别对两杆进行强度计算; 所以可以确定钢杆的直径为20 mm,木杆的边宽为84 mm。 8-16 题8-14所述桁架,试定载荷F的许用值[F]。 解:(1) 由8-14得到AB、AC两杆所受的力与载荷F的关系; (2) 运用强度条件,分别对两杆进行强度计算; 取[F]=97.1 kN。 8-18 图示阶梯形杆AC,F=10 kN,l1= l2=400 mm,A1=2A2=100 mm2,E=200GPa,试计算杆AC的轴向变形△l。 2F F F l1 l2 A C B 解:(1) 用截面法求AB、BC段的轴力; (2) 分段计算个杆的轴向变形; AC杆缩短。 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A处承受载荷F作用。从试验中测得杆1与杆2的纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4,试确定载荷F及其方位角θ之值。已知:A1=A2=200 mm2,E1=E2=200 GPa。 F A B C 300 300 1 2 θ ε1 ε2 解:(1) 对节点A受力分析,求出AB和AC两杆所受的力与θ的关系; F A y x 300 θ FAC FAB 300 (2) 由胡克定律: 代入前式得: 8-23 题8-15所述桁架,若杆AB与AC的横截面面积分别为A1=400 mm2与A2=8000 mm2,杆AB的长度l=1.5 m,钢与木的弹性模量分别为ES=200 GPa、EW=10 GPa。试计算节点A的水平与铅直位移。 解:(1) 计算两杆的变形; 1杆伸长,2杆缩短。 (2) 画出节点A的协调位置并计算其位移; A’ A A2 450 △l1 A1 △l2 F A y x 450 FAC FAB F A y x 450 FAC FAB 水平位移: 铅直位移: 8-26 图示两端固定等截面直杆,横截面的面积为A,承受轴向载荷F作用,试计算杆内横截面上的最大拉应力与最大压应力。 l/3 F D (b) F A B C l/3 l/3 解:(1) 对直杆进行受力分析; FB FA F D F A B C 列平衡方程: (2) 用截面法求出AB、BC、CD段的轴力; (3) 用变形协调条件,列出补充方程; 代入胡克定律; 求出约束反力: (4) 最大拉应力和最大压应力; 8-27 图示结构,梁BD为刚体,杆1与杆2用同一种材料制成,横截面面积均为A=300 mm2,许用应力[σ]=160 MPa,载荷F=50 kN,试校核杆的强度。 F D B C l a 1 2 a 解:(1) 对BD杆进行受力分析,列平衡方程; F D B C FN2 FN1 FBx FBy (2) 由变形协调关系,列补充方程; 代之胡克定理,可得; 解联立方程得: (3) 强度计算; 所以杆的强度足够。 8-30 图示桁架,杆1、杆2与个杆3分别用铸铁、铜与钢制成,许用应力分别为[σ1] =80 MPa,[σ2] =60 MPa,[σ3] =120 MPa,弹性模量分别为E1=160 GPa,E2=100 GPa,E3=200 GPa。若载荷F=160 kN,A1=A2 =2A3,试确定各杆的横截面面积。 F 1000 C 300 1 2 3 F C FN1 FN3 FN2 解:(1) 对节点C进行受力分析,假设三杆均受拉; F C FN1 FN3 FN2 画受力图; F C FN1 FN3 FN2 F C FN1 FN3 FN2 F C FN1 FN3 FN2 列平衡方程; (2) 根据胡克定律,列出各杆的绝对变形; (3) 由变形协调关系,列补充方程; C1 C C’ C2 300 △l1 C3 △l2 △l3 简化后得: 联立平衡方程可得: 1杆实际受压,2杆和3杆受拉。 (4) 强度计算; 综合以上条件,可得 8-31 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。 F F 100 100 100 40 F F 100 解:(1) 剪切实用计算公式: (2) 挤压实用计算公式: 8-32 图示摇臂,承受载荷F1与F2作用,试确定轴销B的直径d。已知载荷F1=50 kN,F2=35.4 kN,许用切应力[τ] =100 MPa,许用挤压应力[σbs] =240 MPa。 450 450 B A C F1 F2 80 40 D D FB D-D d 6 6 10 解:(1) 对摇臂ABC进行受力分析,由三力平衡汇交定理可求
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服