1、哈尔滨工业大学课程设计说明书(论文)Harbin Institute of Technology机械原理大作业二课程名称: 机械原理 设计题目: 凸轮机构设计 院 系: 班 级: 设 计 者: 学 号: 指导教师: 哈尔滨工业大学一、 设计题目 如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数,据此设计该凸轮机构。凸轮机构原始参数 序号升程(mm)升程运动角升程运动规律升程许用压力角27130150正弦加速度30回程运动角回程运动规律回程许用压力角远休止角近休止角100余弦加速度603080二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图凸轮推杆升程运动方程: % t表
2、示转角,s表示位移t=0:0.01:5*pi/6;%升程阶段s= (6*t)/(5*pi)- 1/(2*pi)*sin(12*t/5)*130;hold onplot(t,s); t= 5*pi/6:0.01:pi;%远休止阶段s=130;hold onplot(t,s);t=pi:0.01:14*pi/9;%回程阶段s=65*1+cos(9*(t-pi)/5);hold onplot(t,s);t=14*pi/9:0.01:2*pi;%近休止阶段s=0;hold onplot(t,s);grid onhold off% t表示转角,令1=1t=0:0.01:5*pi/6;%升程阶段v=156
3、*1*1-cos(12*t/5)/pihold onplot(t,v); t= 5*pi/6:0.01:pi;%远休止阶段v=0hold onplot(t,v);t=pi:0.01:14*pi/9;%回程阶段v=-117*1*sin(9*(t-pi)/5)hold onplot(t,v);t=14*pi/9:0.01:2*pi;%近休止阶段v=0hold ont=0:0.001:5*pi/6;a=374.4*sin(12*t/5)/pi;hold onplot(t,a);t=5*pi/6:0.01:pi;a=0;hold onplot(t,a);t=pi:0.001:14*pi/9;a=-21
4、0.6*cos(9*(t-pi)/5);hold onplot(t,a);t=14*pi/9:0.001:2*pi;a=0;hold on三. 绘制凸轮机构的线图% t表示转角,x(横坐标)表示速度ds/d,y(纵坐标)表示位移st=0:0.001:5*pi/6;% 升程阶段x= 156* (1-cos(12*t/5)/pi;y= 130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5);hold onplot(x,y,-r);t= 5*pi/6:0.01:pi;%远休止阶段x=0;y=130;hold onplot(x,y,-r);t=pi:0.001:14*pi/9;%
5、回程阶段x=-117*1*sin(9*(t-pi)/5);y=65*(1+cos(9*(t-pi)/5);hold on plot(x,y,-r);t=14*pi/9:0.01:2*pi;%近休止阶段x=0;y=0;hold onplot(x,y,-r);grid onhold off四.按许用压力角确定凸轮基圆半径和偏距1. 求切点转角(1)在图-4中,右侧曲线为升程阶段的类速度-位移图,作直线Dtdt与其相切,且位移轴正方向呈夹角1=300,则切点处的斜率与直线Dtdt的斜率相等,因为kDtdt=tan300,右侧曲线斜率可以表示为 ,所以,通过编程求其角度。编码:%求升程切点位置转角f=
6、sym(12*tan(pi/3)*sin(12*t/5)+5*cos(12*t/5)-5=0);t=solve(f)ptetty(t)t=-5/12*atan(120/407*3(1/2)+5/12*pians=1.1123求得转角t =1.1123,进而求的切点坐标(x,y)=( 93.8817, 45.8243)(2)在图-4中,左侧曲线为回程阶段的类速度-位移图,作直线Dtdt与其相切,且位移轴正方向呈夹角1=600,则切点处的斜率与直线Dtdt的斜率相等,因为kDtdt=tan300同理求得切点坐标(x,y)=(-110.0654, 42.3144)2. 确定直线方程直线Dtdt:y
7、=tan(pi/3)(x-93.8817)=45.8243;直线Dtdt:y =-tan(pi/3)(x+84.3144)+110.0654;3. 绘图确定基圆半径和偏距% 直线Dtdtx=-125:1:150;y= tan(pi/3)*(x-93.8798)+45.8243;hold on plot(x,y);% 直线Dtdtx=-125:1:150;y=-tan(pi/6)*(x+110.0654)+34.3144;hold onplot(x,y);%直线Ddx=0:1:150;y=tan(2*pi/3)*x;hold on plot(x,y);t=0:0.001:5*pi/6;% 升程阶
8、段x= 156*1*1-cos(12*t/5)/pi;y= 130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5);hold onplot(x,y,-r);t= 5*pi/6:0.01:pi;%远休止阶段x=0;y=130;hold onplot(x,y,-r);t=pi:0.001:14*pi/9;% 回程阶段x=-117*1*sin(9*(t-pi)/5);y=65*1+cos(9*(t-pi)/5);hold on plot(x,y,-r);t=14*pi/9:0.01:2*pi;%近休止阶段x=0;y=0;hold onplot(x,y,-r);grid onhol
9、d off如图,在这三条直线所围成的公共许用区域,只要在公共许用区域内选定凸轮轴心O的位置,凸轮基圆半径r0和偏距e就可以确定了。现取轴心位置为x=20, y=-125,则可得偏距e=20,基圆半径 =127五.绘制凸轮理论轮廓线编码:%凸轮的理论轮廓,t表示转角,x表示横坐标,y表示纵坐标t=0:0.0001:5*pi/6;x=(125+130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5).*cos(t)-20*sin(t);y=(125+130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5).*sin(t)+20*cos(t);hold on pl
10、ot(x,y);t= 5*pi/6:0.0001:pi;x=(125+130).*cos(t)- 20*sin(t);y=(125+130).*sin(t)+ 20*cos(t);hold onplot(x,y);t=pi:0.0001:14*pi/9;x=(125+65*1+cos(9*(t-pi)/5).*cos(t)- 20*sin(t);y=(125+65*1+cos(9*(t-pi)/5).*sin(t)+ 20*cos(t);hold onplot(x,y);t= 14*pi/9:0.0001:2*pi;x=(125).*cos(t)- 20*sin(t);y=(125).*sin
11、(t)+ 20*cos(t);hold onplot(x,y);%基圆t=0:0.001:2*pi;x=20.1074*cos(t);y=20.1074*sin(t);hold onplot(x,y);% 偏心圆t=0:0.001:2*pi;x=13.3509*cos(t);y=13.3509*sin(t);hold onplot(x,y);grid onhold off六、在理论廓线上分别绘出基圆与偏距圆编码:%凸轮的理论轮廓,t表示转角,x表示横坐标,y表示纵坐标t=0:0.0001:5*pi/6;x=(125+130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5).*
12、cos(t)-20*sin(t);y=(125+130*(6*t)/(5*pi)-1/(2*pi)*sin(12*t/5).*sin(t)+20*cos(t);hold on plot(x,y);t= 5*pi/6:0.0001:pi;x=(125+130).*cos(t)- 20*sin(t);y=(125+130).*sin(t)+ 20*cos(t);hold onplot(x,y);t=pi:0.0001:14*pi/9;x=(125+65*1+cos(9*(t-pi)/5).*cos(t)- 20*sin(t);y=(125+65*1+cos(9*(t-pi)/5).*sin(t)+
13、 20*cos(t);hold onplot(x,y);t= 14*pi/9:0.0001:2*pi;x=(125).*cos(t)- 20*sin(t);y=(125).*sin(t)+ 20*cos(t);hold onplot(x,y);%基圆t=0:0.001:2*pi;x=127*cos(t);y=127*sin(t);hold onplot(x,y);%偏心圆t=0:0.001:2*pi;x=20*cos(t);y=20*sin(t);hold onplot(x,y);grid onhold off七.确定滚子半径1. 绘制曲率半径图%凸轮理论轮廓半径,t表示转角,p表示曲率半径,
14、%dxi表示dx/d, dyi表示dy/d,i=1,2,3,4h=130; %升程t0=pi*5/6; % 升程角t01=pi*5/9; % 回程角ts=pi/6; %远休止角ts1=pi*4/9; %近休止角e=20; %偏距s0=125;% 升程阶段t=linspace(0,pi*5/6,1000);s=h*(t/t0-sin(2*pi*t/t0)/(2*pi);dx1 =(h/t0-h*cos(2*pi*t/t0).*cos(t)-(s0+s).*sin(t)- e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0).*sin(t)+(s0+s).*cos(t)- e*s
15、in(t);p=sqrt(dx1.2+dy1.2); hold onplot(t,p);% 远休止阶段t=linspace(pi*5/6,pi,1000);s=h;dx2 =- sin(t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx2.2+dy2.2); hold onplot(t,p);%回程阶段t=linspace(pi,pi*14/9,1000);s=0.5*h*(1+cos(pi*(t-(t0+ts)/t01); dx3 =-0.5*h*pi/(2*t01)*sin(pi/t01)*(t-(t0+ts
16、).*cos(t)- sin(t).*(s + s0) - e*cos(t);dy3 =-0.5*h*pi/(2*t01)*sin(pi/t01)*(t-(t0+ts).*sin(t)+ cos(t).*(s + s0) - e*sin(t);p=sqrt(dx3.2+dy3.2);hold onplot(t,p);%近休止阶段t=linspace(pi*14/9,pi*2,1000); s=0; dx4 =-sin(t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*sin(t); p=sqrt(dx4.2+dy4.2);hold onplot
17、(t,p);hold offtitle(曲率半径,FontSize,20);grid on八. 绘制实际轮廓线% 凸轮理论轮廓半径,t表示转角,p表示曲率半径,%dxi表示dx/d, dyi表示dy/d,i=1,2,3,4h=130; %升程t0=pi*5/6; % 升程角t01=pi*5/9; % 回程角ts=pi/6; %远休止角ts1=pi*4/9; %近休止角e=20; %偏距s0=125;rr=10; %滚子半径% 升程阶段t=linspace(0,pi*5/6,1000);s=h*(t/t0-sin(2*pi*t/t0)/(2*pi); x1=(s0+s).*cos(t)-e*si
18、n(t); y1=(s0+s).*sin(t)+e*cos(t);dx1 =(h/t0-h*cos(2*pi*t/t0).*cos(t)-(s0+s).*sin(t)- e*cos(t);dy1=(h/t0-h*cos(2*pi*t/t0).*sin(t)+(s0+s).*cos(t)- e*sin(t); X1=x1-rr*dy1./(sqrt(dx1.2+dy1.2);Y1=y1+rr*dx1./(sqrt(dx1.2+dy1.2);hold onplot(x1,y1);plot(X1,Y1);% 远休止阶段t=linspace(pi*5/6,pi,1000);s=h; x2=(s+s0)
19、.*cos(t)-e*sin(t);y2=(s+s0).*sin(t)+e*cos(t); dx2 =- sin(t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*sin(t); X2=x2-rr*dy2./(sqrt(dx2.2+dy2.2); Y2=y2+rr*dx2./(sqrt(dx2.2+dy2.2); hold onplot(x2,y2);plot(X2,Y2);% 回程阶段t=linspace(pi,pi*14/9,1000);s=0.5*h*(1+cos(pi*(t-(t0+ts)/t01); x3=(s+s0).*cos(t)
20、-e*sin(t); y3=(s+s0).*sin(t)+e*cos(t);dx3 =-0.5*h*pi/(2*t01)*sin(pi/t01)*(t-(t0+ts).*cos(t)- sin(t).*(s + s0) - e*cos(t);dy3 =-0.5*h*pi/(2*t01)*sin(pi/t01)*(t-(t0+ts).*sin(t)+ cos(t).*(s + s0) - e*sin(t); X3=x3-rr*dy3./(sqrt(dx3.2+dy3.2); Y3=y3+rr*dx3./(sqrt(dx3.2+dy3.2);hold onplot(x3,y3);plot(X3,Y
21、3);%近休止阶段t=linspace(pi*14/9,pi*2,1000); s=0; x4=(s+s0).*cos(t)-e*sin(t); y4=(s+s0).*sin(t)+e*cos(t);dx4 =- sin(t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*sin(t); X4=x4-rr*dy4./(sqrt(dx4.2+dy4.2); Y4=y4+rr*dx4./(sqrt(dx4.2+dy4.2); hold onplot(x4,y4);plot(X4,Y4);hold offgrid ontitle(凸轮实际轮廓线,FontSize,20);