收藏 分销(赏)

工业机器人手臂的静态平衡英文文献.doc

上传人:精**** 文档编号:4750588 上传时间:2024-10-11 格式:DOC 页数:12 大小:371KB 下载积分:8 金币
下载 相关 举报
工业机器人手臂的静态平衡英文文献.doc_第1页
第1页 / 共12页
工业机器人手臂的静态平衡英文文献.doc_第2页
第2页 / 共12页


点击查看更多>>
资源描述
资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 MechanismandMachineTheory35( )1287±1298 .com/locate/mechmt The static balancing of the industrial robot arms Part I: Discrete balancing IonSimionescu*,LiviuCiupitu MechanicalEngineeringDepartment,POLITEHNICAUniversityofBucharest,SplaiulIndependentei313,RO-77206, Bucharest6,Romania Received2October1998;accepted19May1999 Abstract The paper presents some new constructional solutions for the balancing of the weight forces of the industrial robot arms, using the elastic forces of the helical springs. For the balancing of the weight forces of the vertical and horizontal arms, many alternatives are shown. Finally, the results of solving a numericalexamplearepresented.7 ElsevierScienceLtd.Allrightsreserved. Keywords:Industrialrobot;Staticbalancing;Discretebalancing 1.Introduction The mechanisms of manipulators and industrial robots constitute a special category of mechanical systems, characterised by big mass elements that move in a vertical plane, with relatively slow speeds. For this reason the weight forces have a high share in the category of resistance that the driving system must overcome. The problem of balancing the weight forces is extremely important for the play-back programmable robots, where the human operator mustdriveeasilythemechanicalsystemduringthetrainingperiod. Generally, the balancing of the weight forces of the industrial robot arms results in the decrease of the driving power. The frictional forces that occur in the bearings are not taken *Correspondingauthor. E-mailaddress:(I.Simionescu). 0094-114X/00/$-seefrontmatter7 ElsevierScienceLtd.Allrightsreserved. PII: S0094-114X(99)00067-1 1288 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 into consideration because the frictional moment senses depend on the relative movement senses. In this work, some possibilities of balancing of the weight forces by the elastic forces of the cylindricalhelicalspringswithstraightcharacteristicsareanalysed. This balancing can be made discretely, for a ®nite number of work ®eld positions, or in continuous mode for all positions throughout the work ®eld. Consequently, the discrete systemsrealisedonlyanapproximativelybalancingofthearm. The use of counterweights is not considered since they involve the increase of moving masses,overallsize,inertiaandthestressesofthecomponents. 2.Thebalancingoftheweightforceofarotatinglinkaroundahorizontal®xedaxis There are several possibilities of balancing the weight forces of the manipulator and robot armsbymeansofthehelicalspringelasticforces. The simple solutions are not always applicable. Sometimes an approximate solution is preferred,leadingtoaconvenientalternativefromconstructionalpointofview. The simplest balancing possibility of the weight force of a link 1 (the horizontal robot arm, for example) which rotates around a horizontal ®xed axis is schematically shown in Fig. 1. A helical spring 2, joined between a point A of the link and a ®xed B one, is used. The equation thatexpressestheequilibriumoftheforcesmoments[1],whichacttothelink1 ,is wheretheelasticforceofthehelicalspringis: Á m1OG1cosji?m2AXA g?Fsa?0, i?1,...,6, ?1? Fs?F0?k?AB l0?, and Fig.1 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 1289 a? XBYA XAYB; AB X Y x y cosji sinj A 1A i ; ?Rji ; Rji ? sinji cosji A 1A q BG2 2 2 B AB? ?X X ? ??Y Y ? ; m2A? m2: A B A AB ThegravitycentreG2 ofspring2iscollinearwithpairscentresAandB. The sti?ness coecient of the spring is denoted by k, m1 is the mass of the link 1, m2 is the massofthehelicalspring2,andgrepresentsthegravityaccelerationmagnitude. Thus,theunknownfactors:x1A,y1A,XB,YB,F0 andkmaybecalculatedinsuchawaythat theequilibriumoftheforcesisobtainedforsixdistinctvaluesoftheangleji:Themovableco- ordinate axis system x1Oy1 attached to the arm 1 was chosen so that the gravity centre G1 is upontheOx1 axis.Theco-ordinatesx1A andy1A de®nedthepositionofpointAofthearm1. in®niteIn thenumberparticularofsolutions,case, characterisedwhichverifytheby equation:y1A?XB?l0?F0?0, the problem allows an ?m1OG1?m2Ax1A?g, k? x Y 1A B foranyvalueofanglej: Since in this case, Fs?kAB (see line 1, Fig. 2),some diculties arise in the constructionof this system where it is not possible to use a helical extension spring. The compression spring, which has to correspond to the calculated feature, must be prevented against buckling. Consequently, the friction forces that appear in the guides make the training operation more dicult. Eveninthegeneralcase,wheny1A 0?andXB 0?,resultsareducedvalueoftheinitiallength l0 of the spring, corresponding to the forces F ?0: The modi®cation of the straight 0 characteristic position to the necessary spring for balancing (line 2, Fig. 2), i.e. to obtain an acceptableinitiallengthl0 fromtheconstructionalpointofview,maybeachievedbyreplacing the ®xed point B of spring articulation by a movable one. In other words, the spring will be articulatedwithitsBendofamovablelink2,whosepositiondependsonthatofthearm1. Link 2 may have a rotational motion around a ®xed axis, a plane-parallel or a translational one,anditisdrivenbymeansofanintermediarykinematicschain(Figs.3±5). FurtherpossibilitiesareshowninRefs.[2±7]. Fig.2 1290 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 Fig.3.Balancingelasticsystemwithfourbarmechanism. Fig.3showsakinematicsschemainwhichlink2isjoinedwiththeframeatpointC,andit is driven by means of the connecting rod 3 from the robot arm 1. The balancing of the forces systemthatactsonthearm1isexpressedbythefollowingequation: Á fi? m1OG1cosji?m4AXA g?Fs?YAcosyi XAsinyi??R31XYE R31YXE?0, i?1,...,12, ?2? Y YA BG 4 B where:yi?arctanX X ;m4A?AB m4;m4B?m4 m4A; B A X Y x X X Y BC 0 cosci sinc sinci cosci E 1E B C i ?Rji ; ? ?Rci ; Rci ? : y Y B E 1E C Thecomponentsofthereactionforcebetweentheconnectingrod3andthearm1,ontheaxes of®xedco-ordinatesystem,are: Á T?XD XE??m3 XD XG3 ?XC XE?g R31X ? YD?X X ? Y ?X X ? Y ?X XD? ; C E C D E E C Á R31X?YE YD? m3 XG XD g ? 3 , R31Y X X D E where: h  à Á Á T?Fs ?XB XC?sinyi ?YB YC?cosyi ? m2 XG XC ?m3 XG XC ?m4B?XB 2 3 i XC? g, I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 1291 X Y X Y x y X Y X Y x y D C 2D G2 C 2G2 ? ?Rci ; ? ?Rci ; D C 2D G C 2G 2 2 X X Y x y G C 3G 3 ? ?R 3 , xi Y G C 3G 3 3 cosxi sinx sinxi cosxi i Rxi ? : Thevalueofangleci: p c ?arctan U U2?V2 W2 VW p representsthesolutionoftheequation: a i V U2?V2 W2 UW Á Á Ucos ci?a ?Vsin ci?a ?W?0, where: U?2CD?XC XE?; V?2CD?YE YC?; W?OE2?CD2?OC2 DE2 2?XEXC?YEYC?; y a?arctanx2D: 2D Similartothepreviouscase,theangleoftheconnectingrod3is: Á xi?arccosCDcos ci?a ?XC XE DE ThedistancesOG1 andBG4,andtheco-ordinates:x2G2,y2G2,XG3,YG3 givethepositionsofthe masscentresoflinks1,4,3and2 ,respectively. The unknowns of the problem: x1A, y1A, x1E, y1E, x2D, y2D, XC, YC, ED, BC, F0 and k are foundbysolvingthesystemmadeupthroughreiteratedwritingoftheequilibriumequation(2) for 12 distinct values of the position angle ji of the robot arm 1, which are contained in the work ®eld. The masses mj, j?1,...,4, of the elements and the positions of the mass centres are assumed as known. The static equilibrium of the robot arm is accurately realised in those 12 positions according to angles ji, i?1,...,12 only. Due to continuity reasons, the unbalancingvalueisnegligiblebetweenthesepositions. Infact,theproblemissolvedin aniterativemanner,becauseatthebeginningofthedesign, themassesofthehelicalspringandlinks2and3areunknown. The maximum magnitude of the unbalanced moment is inverse proportional to the number ofunknownsofthebalancingsystem.Byassemblingthetwohelicalspringsinparallelbetween 1292 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 Fig.4.Elasticsystemwithslider-crankmechanismI. arm 1 and link 2, the balancing accuracy is increased, since 18 distinct values of angle ji may beimposedwithinthesamework®eld. In Fig. 4, another possibility for the static balancing of a link that rotates around a horizontal ®xed axis is shown. The point B belongs to slide 2 which slides along a ®xed straight line and is driven by means of the connecting rod 3 by the robot arm 1. The system, formedbyfollowingequilibriumequations: Á fi? m1OG1cosji?m4AXA g?Fs?YAcosy XAsiny? R13XYE?R13YXE?0, i?1,...,11, ?3? where R13X?  à cosci; ?m2?m3?m4B?gsina Fscos?y a? DE m3gDG 3sina Á DEcos a c i  à m3gDG3cosacosci ?m2?m3?m4B?gsina Fscos?y a? DEsinc R13Y ? Á i; DEcos a c i c ?a?arcsinXEsina YEcosa b e; DE i XB?esina??Si?d?cosa; YB??Si?d?sina ecosa, aresolvedwithrespecttotheunknowns:x1A,y1A,x1D,y1D,CD,d,b,e,a,F0 andk. ThedisplacementSi ofthesliderhasthevalue: I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 1293 Fig.5.Elasticsystemwithslider-crankmechanismII. Si? XE?DEcosci ?b?e?sina cosa p , if a ?, 2 or Si? YE?DEsinci??b?e?cosa, if a 0?: sina If the work ®eld is symmetrical with respect to the vertical axis OY, the balancing mechanismhasaparticularshape,characterisedbyy1A?y1D?b?e?0,anda?p= 2[5]. Thenumberoftheunknownsdecreasedtosix,butthebalancingaccuracyishigher,because itispossibletoconsiderthatthepositionanglesji verifytheequality: ji?6?p ji, i?1,...,6: ?4? Likewise, the balancing helical spring 4 can be joined to the connecting rod 3 at point B (Fig.5).Eq.(3)wherethecomponentsofthereactionforcebetweenthearm1andlink3are: ?  ? à ?m2?m3?m4B?gsina?Fscos?y a? cosci R13X Á cos a c i à  à m3?XG3 XD??m4B?XB XD? g?Fs ?XB XD?siny ?YB YD?cosy Á sina; DEcos a c i 1294 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 à ?  ?m2?m3?m4B?gsina?Fscos?y a? sinci R13Y Á cos a c i  à  à cosa; m3?XG3 XD??m4B?XB XD? g?Fs ?XB XD?siny ?YB YD?cosy Á DEcos a c i XEsina YEcosa e, X Y X Y x y B D 3B ? ?Rci , ci?a?arcsin DE B D 3B issolvedwithrespecttotheunknowns:x1A,y1A,x1D,y1D,x3B,y3B,CD,e,a,F0 andk. Fig. 6 shows another variant for the balancing system. The B end of the helical spring 4 is joinedtotheconnectingrod3whichhasaplane-parallelmovement.Thefollowingunknowns: x1A,y1A,x1E,y1E,x3B,y3B,XC,YC,d,F0 andkarefoundassolutionsofthesystemmadeup ofequilibriumequation(3),where: ? Usinci V?XE XC?; R13Y? V?YC YE? Ucosc R13X i; W W and: h  à Á Á U?Fs ?XB XC?siny ?YB YC?cosy ? m2 XG XC ?m3 XG XC ?m4B?XB 2 3 i XC? g; Á V?Fscos ci y ?m3gsinci; Fig.6.Balancingelasticsystemwithoscillating-slidermechanism. I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 1295 W??YC YE?sinci??XC XE?cosci; c ?arctanYC YE arcsin d ; i X X CE C E q 2 2 E CE? ?X X ? ??Y Y ? : C E C In the same manner as the constructive solution shown in Fig. 4, the balancing accuracy is higher, if the work ®eld is symmetrical with respect to the vertical OY axis ?y1A?y1E?y3B ? d?X ?0?[5],becausethepositionanglesj verifytheequality(4). C i Fig.7.Balancingelasticsystemsforverticalandhorizontalrobotarms. 1296 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 3.Thestaticbalancingoftheweightforcesoffourbarlinkageelements The static balancing of a vertical arm of a robot presents some particularities, considering that it bears the horizontal arm. For this reason, most of the robot manufacturers use a parallelogram mechanism as a vertical arm (Fig. 7). Therefore, the link 3 has a circular translational movement. At point K is joined the elastic system that is used for balancing the weight of the horizontal robot arm. For balancing of the weight forces of the four-bar linkage elements,anyoneoftheconstructivesolutionsmentionedabovecanbeused.Forexample,the elastic system schematised in Fig. 3 is considered. The unknown dimensions of the elastic systemarefoundbysimultaneouslysolvingthefollowingequations:  m2dYG dYC dYG4 dt dYG5 dt dYG6 dt dt ??m3?m8?m9?m10?m11? dt 2 ?m4 ?m5 ?m6  dt g?Fs dt ? m7 dYI dYJ dIJ ? 2 dt ?0, ?5? whicharewrittenfor12distinctvaluesofthepositionanglej2i oftheverticalarm. These equations result from applying on the virtual power principle to force system which acts on the linkage. The equality (5) is valid when the horizontal arm does not rotate around the axis of pair C, and consequently the velocity of the gravity centre of the ensemble formed by the elements 3, 8, 9, 10 and 11 is equal to the velocity of point C. The masses of the links andthepositionsofthegravitycentresaresupposedtobeknown. Eq.(5)maybesubstitutedbyEq.(6),ifitisassumedthatdj2=dt?1:  m2dYG dYC dYG dYG dYG 2 ??m3?m8?m9?m10?m11? dj2 ?m4 dj ?m5 dj ?m6 dj 4 5 6 dj2 2 2 2  g?F m7 dYI dYJ dIJ sdj2 ? 2 dj2 ?dj2 ?0, ?6? where:  q  2 2 J Fs?F0? ?X X ? ??Y Y ? l0 k; I J I YG ?x2G2sinj2i?y2G2cosj2i; 2 YG ?x4G4sinj2i?y4G4cosj2i; 4 YG ?YF?x5G5sinj5i?y5G5cosj5i; 5 I.Simionescu,L.Ciupitu/MechanismandMachineTheory35( )1287±1298 1297 YG ?YH?x6G6sinj6i?y6G6cosj6i; 6 YI?YH?x6Isinj6i?y6Icosj6i; YJ?x2Jsinj2i?y2Jcosj2i; XF?x2Fcosj2i y2Fsinj2i; YF?x2Fsinj2i?y2Fcosj2i; YC?BCsinj2i; p VW?U U2?V2 W2 j5i?arctan p; UW V U2?V2 W2 U?2FG?XF XH?; V?2FG?Y YH?; F W?GH2 FG2 ?XF XH? ? YF YH?2; 2 p j6i?arctanST R R2?S2 T2 p; RT S R2?S2 T2 R?2GH?XH XF?; S?2GH?YH YF?; T?FG2 GH2 ?XF XH? ? YF YH?2: 2 Theunknownsoftheproblemare: . thelengthsFG
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服