资源描述
成都七中七年级下册数学期末试卷测试题(Word版 含解析)
一、解答题
1.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
2.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
3.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC?
(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.
4.已知,AB∥CD.点M在AB上,点N在CD上.
(1)如图1中,∠BME、∠E、∠END的数量关系为: ;(不需要证明)
如图2中,∠BMF、∠F、∠FND的数量关系为: ;(不需要证明)
(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;
(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.
5.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二、解答题
6.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足.
(1)点的坐标为______;点的坐标为______.
(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由.
(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.
7.已知,点为平面内一点,于.
(1)如图1,点在两条平行线外,则与之间的数量关系为______;
(2)点在两条平行线之间,过点作于点.
①如图2,说明成立的理由;
②如图3,平分交于点平分交于点.若,求的度数.
8.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由.
(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)
(3)如图3,直线上有两点A、C,分别引两条射线、.,,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t.
9.如图1,E点在BC上,∠A=∠D,AB∥CD.
(1)直接写出∠ACB和∠BED的数量关系 ;
(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E;
(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.
10.课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程
解:过点A作ED∥BC,
∴∠B=∠EAB,∠C=
又∵∠EAB+∠BAC+∠DAC=180°
∴∠B+∠BAC+∠C=180°
解题反思:
从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)
深化拓展:
(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.
三、解答题
11.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;
(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;
(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.
12.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
13.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
14.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
15.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
【参考答案】
一、解答题
1.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
2.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
3.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD
解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;
(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;
(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.
【详解】
解:(1)是,理由如下:
要使AD平分∠EAC,
则要求∠EAD=∠CAD,
由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,
则当∠ACB=∠B时,有AD平分∠EAC;
故答案为:是;
(2)∠B=∠ACB,理由如下:
∵AD平分∠EAC,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠B=∠EAD,∠ACB=∠CAD,
∴∠B=∠ACB.
(3)∵AC⊥BC,
∴∠ACB=90°,
∵∠EBF=50°,
∴∠BAC=40°,
∵AD∥BC,
∴AD⊥AC.
【点睛】
此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.
4.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB
解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°
【分析】
(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EH∥AB,如图1,
∴∠BME=∠MEH,
∵AB∥CD,
∴HE∥CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN﹣∠END.
如图2,过F作FH∥AB,
∴∠BMF=∠MFK,
∵AB∥CD,
∴FH∥CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,
∴2∠BME+2∠END+∠BMF﹣∠FND=180°,
即2∠BMF+∠FND+∠BMF﹣∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQ∥NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.
5.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二、解答题
6.(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-
解析:(1),;(2)1;(3)不变,值为2
【分析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可;
(3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.
【详解】
解:(1)∵+|b-2|=0,
∴a-2b=0,b-2=0, 解得a=4,b=2,
∴A(0,4),C(2,0).
(2)存在, 理由:如图1中,D(1,2),
由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,
∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,
∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t,
∵S△ODP=S△ODQ,
∴2-t=t,
∴t=1.
(3)结论:的值不变,其值为2.理由如下:如图2中,
∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,
如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,
∴∠PHO=∠GOF=∠1+∠2,
∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,
∴=2.
【点睛】
本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.
7.(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥
解析:(1)∠A+∠C=90°;(2)①见解析;②105°
【分析】
(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【详解】
解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)①如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥DM,
∴∠C=∠CBG,
∠ABD=∠C;
②如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:
2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点睛】
本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
8.(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反
解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒
【分析】
(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;
(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;
(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.
【详解】
解:(1)平行.理由如下:
如图1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b(内错角相等,两直线平行);
(2)如图2:
∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,
∴∠1=∠2,
∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,
∴∠1+∠2=180°-40°-90°=50°,
∴∠1=×50°=25°,
∴MN与水平线的夹角为:25°+40°=65°,
即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;
(3)存在.
如图①,AB与CD在EF的两侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠ACD=180°-65°-3t°=115°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠ACD=∠BAC,
即115-3t=105-t,
解得t=5;
如图②,CD旋转到与AB都在EF的右侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=360°-3t°-65°=295°-3t°,
∠BAC=105°-t°,
要使AB∥CD,
则∠DCF=∠BAC,
即295-3t=105-t,
解得t=95;
如图③,CD旋转到与AB都在EF的左侧时,
∵∠BAF=105°,∠DCF=65°,
∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,
∠BAC=t°-105°,
要使AB∥CD,
则∠DCF=∠BAC,
即3t-295=t-105,
解得t=95,
此时t>105,
∴此情况不存在.
综上所述,t为5秒或95秒时,CD与AB平行.
【点睛】
本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.
9.(1)∠ACB+∠BED=180°;(2)100°;(3)40°
【分析】
(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A
解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°
【分析】
(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论;
(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数;
(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数.
【详解】
解:(1)如图1,延长交于点,
,
,
,
,
,
,
,
故答案为:;
(2)如图2,作,,
,
,
,,
平分,
,
,
,
,
,
,
平分,
,
,
,
,
设,
,
比大,
,
,
解得.
的度数为;
(3)的度数不变,理由如下:
如图3,过点作,设直线和直线相交于点,
平分,平分,
,
,
,,
,
,
,
,
由(2)可知:,
,
,
,
,
,
.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
10.(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
解析:(1)∠DAC;(2)360°;(3)65°
【分析】
(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.
【详解】
解:(1)过点A作ED∥BC,
∴∠B=∠EAB,∠C=∠DCA,
又∵∠EAB+∠BAC+∠DAC=180°,
∴∠B+∠BAC+∠C=180°.
故答案为:∠DAC;
(2)过C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠D=∠FCD,
∵CF∥AB,
∴∠B=∠BCF,
∵∠BCF+∠BCD+∠DCF=360°,
∴∠B+∠BCD+∠D=360°;
(3)如图3,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°.
【点睛】
此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.
三、解答题
11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可
解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.
【分析】
[习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明;
[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=;
[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°.
【详解】
[习题回顾]证明:∵∠ACB=90°,CD是高,
∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,
∴∠B=∠ACD,
∵AE是角平分线,
∴∠CAF=∠DAF,
∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,
∴∠CEF=∠CFE;
[变式思考]相等,理由如下:
证明:∵AF为∠BAG的角平分线,
∴∠GAF=∠DAF,
∵∠CAE=∠GAF,
∴∠CAE=∠DAF,
∵CD为AB边上的高,∠ACB=90°,
∴∠ADC=90°,
∴∠ADF=∠ACE=90°,
∴∠DAF+∠F=90°,∠E+∠CAE=90°,
∴∠CEF=∠CFE;
[探究延伸]∠M+∠CFE=90°,
证明:∵C、A、G三点共线 AE、AN为角平分线,
∴∠EAN=90°,
又∵∠GAN=∠CAM,
∴∠M+∠CEF=90°,
∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,
∴∠CEF=∠CFE,
∴∠M+∠CFE=90°.
【点睛】
本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.
12.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当
解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.
【分析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;
【详解】
解:(1)∵BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC=50°,
∵∠EPB是△PFB的外角,
∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;
(2)①当交点P在直线b的下方时:
∠EPB=∠1﹣50°=20°;
②当交点P在直线a,b之间时:
∠EPB=50°+(180°﹣∠1)=160°;
③当交点P在直线a的上方时:
∠EPB=∠1﹣50°=20°;
(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;
②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
【点睛】
考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.
13.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;
[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
∵OM⊥ON,
∴∠CON=90°,
∴∠2+∠3=90°
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=180°,
∴∠DCB+∠ABC=180°,
∴AB∥CD;
【尝试探究】
如图3,
在△OBC中,∵∠COB=55°,
∴∠2+∠3=125°,
∵∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=250°,
∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,
∴∠EBC+BCE=360°-250°=110°,
∴∠BEC=180°-110°=70°;
【深入思考】
如图4,
β=2α,
理由如下:∵∠1=∠2,∠3=∠4,
∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,
∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,
∵∠BOC=∠3-∠2=α,
∴β=2α.
【点睛】
本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
14.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的
展开阅读全文