资源描述
优质济宁市数学五年级下册期末试卷级(答案)
一、选择题
1.把一根长2米的长方体木料锯成3段后,表面积增加了36平方分米,原来长方体的体积是( )立方分米。
A.36 B.360 C.18 D.180
2.下列单位名称使用不适当的是( )。
A.电冰箱的容积是200L。 B.一袋盐重300kg。
C.教室中黑板的面积大约是4m2。 D.一间教室大约占地72m3。
3.6的因数有1,2,3,6,这几个因数的关系是,像6这样的数叫做完全数。下面几个数中,是完全数的是( )。
A.28 B.9 C.15 D.48
4.甲数是乙数的5倍,甲、乙两数的最大公因数是( )。(甲乙两数是正整数)
A.甲数 B.乙数 C.5 D.1
5.下面分数中,比小的是( )。
A. B. C. D.
6.下面的问题中,不能用“”解决的是( )。
A.小妍做一个中国结需要米的红绳,24米红绳能做几个这样的中国结?
B.淘淘有24枚邮票,东东的邮票数是淘淘的。东东有多少枚邮票?
C.某小学举行诗词诵读大赛,有24名同学进入决赛,占初赛总人数的,共有多少名同学参加初奏?
D.王阿姨花24元买了千克樱桃,每千克樱桃多少钱?
7.某电商平台每隔5千米有一座仓库,共有A、B、C、D四座仓库,图中数字表示各仓库库存货物的吨数。现需要把所有的货物集中存放在其中某一个仓库中,如果每吨货物运输1千米需要运费3元,要使运费最少,则需将货物集中到哪座仓库?( )。
A.仓库A B.仓库B C.仓库C D.仓库D
8.已知大长方体的棱长之和为60cm,长为8cm,底面面积为32cm2,如果把这个长方体从正面的中间挖去一个小正方体,小正方体棱长之和为12cm,那么( )。
①体积变小,表面积变大
②体积变小,表面积变小
③体积、表面积均不变
④挖去小正方体后的体积是95cm3,表面积是140cm2
⑤挖去小正方体后的体积是96cm3,表面积是140cm2
⑥挖去小正方体后的体积是96cm3,表面积是136cm2
A.②④ B.③⑥ C.①④ D.①⑤
二、填空题
9.填合适的数。
2.5m3=(________)dm3=(________)L 5.02dm3=(________)dm3(________)cm3 20分=(________)时
10.是(________)分数,它的分数单位是(________),它有(________)个这样的单位。它比1多(________)个这样的单位。
11.在自然数1~20这些数中,2的倍数有(________)个,3的倍数有(________)个,5的倍数有(________)个,2和3的公倍数有(________)个。
12.18和36的最大公因数是(________),最小公倍数是(________)。
13.学校合唱团有24名男生和36名女生,如果男、女生分别排队,要使每排人数相同,每排最多排(________)人,这时男、女生一共要排成(________)排。
14.小明用相同的正方体木块摆出了一个模型,从三个不同的方向看这个模型,符合下图的要求。搭建这个模型最少需要(______)个正方体木块。
从右面看 从正面看 从上面看
15.用8个完全相同的小正方体拼成一个大正方体,表面积减少了96cm2,一个小正方体的体积是(___________)立方厘米。
16.有30瓶水,其中29瓶质量相同,另外1瓶是盐水,比其他的水略重一些。至少称(________)次能保证找出这瓶盐水。
三、解答题
17.直接写出得数。
18.计算下面各题,注意使用简便算法。
(1) (2) (3)
19.解方程。
20.一根15米长的绳子,用去5米。余下的是这根绳子的几分之几?
21.有一种地砖,长是45厘米,宽是30厘米,至少要用多少块这样的砖才能铺成一个实心的正方形?
22.一根桥桩全长11米,打入河底部分长米,露出水面部分比打入河底部分多米。水深是多少米?
23.一块长方形铁皮(如图),从四个角各切掉一个边长为的正方形,然后做成盒子。这个盒子用了多少铁皮?它的容积是多少?
24.有一个长方体鱼缸,如图,放进去一块珊瑚石(完全沉没),水面升高了5厘米,这块珊瑚石的体积是多少?
25.按要求画出图形。
(1)画出1号图形的所有对称轴。
(2)画出2号图形沿虚线对称的轴对称图形的另一半。
(3)画出3号图形向下平移6格后的图形并涂上阴影。
26.根据统计图完成下列各题。
PM2.5的浓度与空气质量对照表
PM2.5浓度(微克/立方米)
空气质量
0~35
达
标
优
35~75
良
75~150
不
达
标
轻度污染
150~250
中度污染
250~350
重度污染
350以上
严重污染
(1)从图中可以看出,( )地的空气质量较好一些,其中空气质量为优的有( )天。该地空气质量达标的天数占该周总天数的。
(2)乙地空气质量不达标的天数占该周总天数的。
(3)你有什么想说的或者有什么好的建议?请写下来。
【参考答案】
一、选择题
1.D
解析:D
【分析】
每锯一次,就会增加2个底面;木料锯成3段,锯了2次,增加4个底面,用36÷4即可求出一个底面的面积,再乘高即可。
【详解】
2米=20分米;
36÷[(3-1)×2]×20
=9×20
=180(立方分米);
故答案为:D。
【点睛】
明确每锯一次,就会增加2个底面是解答本题的关键,进而求出增加的底面个数以及面积,再乘高即可求出体积。
2.B
解析:B
【分析】
根据情境选择合适的单位即可。
【详解】
A.根据生活经验,电冰箱的容积是200L,说法正确;
B.根据生活经验,一袋盐重300kg,说法错误;
C.根据生活经验,教室中黑板的面积大约是4m2,说法正确;
D.根据生活经验,一间教室大约占地72m3,说法正确。
故答案为:B。
【点睛】
本题考查单位选择,解答本题的关键是能够根据生活经验选择合适的单位匹配情境。
3.A
解析:A
【分析】
根据题干中对完全数的定义,一一判断出选项中的数是否是完全数即可。
【详解】
A.28的因数有1、2、4、7、14、28,其中1+2+4+7+14=28,所以28是完全数;
B.9的因数有1、3、9,其中1+3=4,所以9不是完全数;
C.15的因数有1、3、5、15,其中1+3+5=9,所以15不是完全数;
D.48的因数有1、2、3、4、6、8、12、16、24、48,其中1+2+3+4+6+8+12+16+24=76,所以48不是完全数。
故答案为:A
【点睛】
本题考查了因数的求法,会求一个数的因数是解题的关键。
4.B
解析:B
【分析】
根据“成倍数关系的两个数,它们的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数”进行解答即可。
【详解】
甲数=5乙数
甲数÷乙数=5,甲数是乙数的倍数;
甲、乙两个数的最大公因数是乙数。
故答案选:B
【点睛】
解答此题的关键是根据最大公约数和最小公倍数的关系进行解答即可。
5.A
解析:A
【分析】
根据题意,分别和下列的分数进行通分,然后按照同分母分数比较的大小的方法进行比较即可。
【详解】
A.=,=,因为<所以<;
B.=,=,因为>所以>;
C.=,=,因为>所以>;
D.=,因为>所以>
故答案为:A
【点睛】
解答此题的关键是将分别和下列的分数进行通分,即可进行比较。
6.B
解析:B
【分析】
A.分数后面加单位表示具体的数,即根据总长度÷一个的长度=总个数,由此即可分析。
B.通过题目可知淘淘是单位“1”,单位“1”已知用乘法,由此即可列式;
C.根据题目可知初赛总人数是单位“1”,单位“1”未知,用除法,由此即可列式;
D.根据公式:总钱数÷重量=单价,由此列式即可。
【详解】
A.根据分析可知,总长度÷一个的长度=总个数,即24÷;符合题意;
B.单位“1”已知用乘法,即24×;不符合题意;
C.根据公式对应量÷对应分率=单位“1”,即24÷;符合题意;
D.根据分析可知,24÷,符合题意。
故答案为:B。
【点睛】
本题主要考查分数除法的列式,同时要注意,单位“1”已知用乘法,单位“1”未知用除法。
7.C
解析:C
【分析】
将货物往两端运总运输成本一般比往中间运高,可将两端的两个仓库排除;D仓库的货物最多,因此如果从D往B运,费用一定比从A向C运费用高,所以B排除,据此解答即可。
【详解】
选择B不动,总耗费为:
10×5×3+15×5×3+25×5×2×3=1125(元)
选择D不动,总耗费为:
10×2×5×3+20×5×3+25×5×3=975(元)
故答案为:C。
【点睛】
本题考查优化问题,解答本题的关键是理解从两端运比向中间运的费用高。
8.C
解析:C
【解析】
【详解】
长方体的底面面积为32cm2,则宽为32÷8=4cm,根据棱长为60可知,长+宽+高=60÷4=15,所以高为3cm。挖去小正方体后,体积变小,表面积变大,①正确,②③错误。
小正方体棱长之和为12cm,则小正方体棱长为12÷12=1cm
挖去小正方体后的体积是8×4×3-1×1×1=95(cm3)
挖去小正方体后的表面积是(8×4+8×3+3×4)×2+4×1×1=140(cm2)
因此④正确,⑤⑥错误。
故答案为C
二、填空题
9.2500 5 20
【分析】
1m3=1000dm3=1000L,1dm3=1000cm3,1小时=60分,根据这三个进率直接填空即可。
【详解】
2.5m3=2500dm3=2500L;5.02dm3=5dm320cm3;20分=时。
【点睛】
本题考查了单位换算,明确各个单位间的进率是解题的关键。
10.假 9 2
【分析】
分子比分母大或者分子和分母相等的分数叫作假分数;9>7,是假分数,分母是几,它的分数单位就是几分之一;分母是7,分数单位是;分数单位是分母是几,就有几个这样的分数单位;分母是9,有9个这样的分数单位;把1化成分母是7的分数,用9-7,差是几,就比1多几个这样的分数单位,据此解答。
【详解】
根据分析可知,是假分数,它的分数单位是,它有9个这样的分数单位,它比1多2个这样的分数单位。
【点睛】
本题考查假分数的意义,分数单位的意义,根据假分数的意义和分数单位的意义,进行解答。
11.6 4 3
【分析】
根据求倍数方法,求出2、3、5在20内的倍数,以及2和3 的公倍数,在进行解答。
【详解】
1~20这些数中,
2的倍数有:2、4、6、8、10、12、14、16、18、20,共有10个;
3的倍数有:3、6、9、12、15、18,共6个;
5的倍数有:5、10、15、20,共4个;
2和3的公倍数有:6、12、18,共3个。
在自然数1~20这些数中,2的倍数有10个,3的倍数有6个,5的倍数有4个,2和3的倍数有3个。
【点睛】
本题考查倍数的求法,关键是最小倍数是它本身。
12.36
【分析】
求最大公因数也就是几个数的公有质因数的连乘积,对于这两个数来说:两个数的公有质因数连乘积就是它们的最大公约数,两个数的公有质因数和它们独有的质因数的连乘积就是它们的最小公倍数,由此解决问题即可。
【详解】
18=2×3×3,
36=2×2×3×3,
所以18和36的最大公因数是2×3×3=18。
18和36的最小公倍数是2×3×3×2=36。
【点睛】
此题主要考查求两个数的最大公约数和最小公倍数的方法,由此可以直接解决问题。
13.5
【分析】
由题意知:男、女生分别排队,要使每排人数相同,每排最多排多少人。就是求24和36的最大公因数。求出后,再用总人数除以这个最大公因数,可求得一共排多少排。据此解答。
【详解】
24= 2×2×2×3
36 = 2×2×3×3
24和36的最大公因数是: 2×2×3=12
要使每排人数相同,每排最多排12人。
(24+36)÷12
=60÷12
=5(排)
【点睛】
求得24和32的最大公约数是解答本题的关键。
14.7
【分析】
根据三视图的情况,可以依次判断出该模型分为几排几层,按照前排后排,上层下层依次据此最少需要的正方体木块数,即可得解。
【详解】
据分析可得:此立体图形分为前后两排;从正面和上面综合看,此立体图形有上下两层;
前排下层有3个,上层有2个,分布在左右两侧,前排共5个;
后排下层有1个,靠在右边,后排上层有1个,也靠在右边,后排共2个;
搭建这个模型最少需要:5+2=7(个)。
【点睛】
此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和创新思维能力。
15.8
【分析】
用8个小正方体摆成一个大正方体,那就是上下各4个小正方体,拼成之后会减少24个小正方形的面积,正好这24个小正方形的面积即是96平方厘米,则可求出一个小正方形的面积,又可求出小正方体的
解析:8
【分析】
用8个小正方体摆成一个大正方体,那就是上下各4个小正方体,拼成之后会减少24个小正方形的面积,正好这24个小正方形的面积即是96平方厘米,则可求出一个小正方形的面积,又可求出小正方体的棱长,根据正方体的体积公式可求正方体的体积。
【详解】
96÷24=4(平方厘米)
每个小正方形的边长为2厘米,即每个小正方体的棱长为2厘米。
2×2×2=8(立方厘米)
【点睛】
本题考查拼接图形与正方体的体积,明确8个小正方体拼成大正方体后减少的是24个面是解决本题的关键。
16.4
【分析】
第一次,把30瓶分成3份:10瓶、10瓶、10瓶,取其中的两份分别放在天平两侧,若天平平衡,盐水在未取的一份中,若天平不平衡,取较重的一份继续;
第二次,取含有盐水的那份分成3份:3瓶
解析:4
【分析】
第一次,把30瓶分成3份:10瓶、10瓶、10瓶,取其中的两份分别放在天平两侧,若天平平衡,盐水在未取的一份中,若天平不平衡,取较重的一份继续;
第二次,取含有盐水的那份分成3份:3瓶、3瓶、4瓶,取3瓶的两份分别放在天平两侧,若天平平衡,则盐水在未取的一份中,若天平不平衡,取较重的一份继续;
第三次,取含有盐水的那份(3瓶或4瓶),取两瓶分别放在天平两侧,若天平平衡,则盐水是未取的那瓶或在未取的那份中,若天平不平衡,较重的那瓶是盐水;
第四次,将含盐水的那份(2瓶),分别放在天平两侧,较重的那瓶是盐水。
【详解】
有30瓶水,其中29瓶质量相同,另外1瓶是盐水,比其他的水略重一些。至少称 4次能保证找出这瓶盐水。
【点睛】
熟练掌握找次品的解答方法是解答本题的关键,待测物品在分组时,尽量平均分,当不能平均分时,最多和最少只能差1。
三、解答题
17.;;1;
;;;
【详解】
略
【点睛】
解析:;;1;
;;;
【详解】
略
【点睛】
18.(1);(2);(3)
【分析】
(1),利用加法交换律和结合律简便运算;
(2)先去括号,再计算;
(3),观察可知,;……据此推出结果等于。
【详
解析:(1);(2);(3)
【分析】
(1),利用加法交换律和结合律简便运算;
(2)先去括号,再计算;
(3),观察可知,;……据此推出结果等于。
【详解】
(1)
(2)
(3)
19.;;
【分析】
根据等式的性质,方程两边同时加;
根据等式的性质,方程两边同时减;
将原方程化简后得,根据等式的性质,方程两边同时加1.68,然后方程两边同时除以7。
【详解】
解:
解:
解析:;;
【分析】
根据等式的性质,方程两边同时加;
根据等式的性质,方程两边同时减;
将原方程化简后得,根据等式的性质,方程两边同时加1.68,然后方程两边同时除以7。
【详解】
解:
解:
解:
20.【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法计算。
【详解】
(15-5)÷15
=10÷15
=
答:余下的是这根绳子的。
【点睛】
此题考查的是分数除法的意义
解析:
【分析】
先用减法求出余下部分的长度,再根据求一个数是另一个数的几分之几用除法计算。
【详解】
(15-5)÷15
=10÷15
=
答:余下的是这根绳子的。
【点睛】
此题考查的是分数除法的意义,掌握求一个数是另一个数的几分之几用除法计算是解题关键。
21.6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【
解析:6块
【分析】
根据题意,用长方形的砖块铺成一个大正方形,求至少需要多少块,则正方形的边长为45和30的最小公倍数;求出铺成的正方形的边长,进而求出长需要几块,宽需要几块,即可求出需要的总块数。
【详解】
45=3×3×5;
30=2×3×5;
45和30的最小公倍数是3×5×3×2=90;
(90÷45)×(90÷30)
=2×3
=6(块);
答:至少要用6块这样的砖才能铺成一个实心的正方形。
【点睛】
解答本题的关键是明确铺成的正方形的边长为45和30的最小公倍数,从而进一步解答。
22.米
【分析】
先用河底部分的长度加上米,求出水面以上部分的长度,再用总长度减去河底部分的长度,再减去水面以上部分的长度即可求解。
【详解】
+=(米)
11--
=--
=(米)
答:水深是米。
【
解析:米
【分析】
先用河底部分的长度加上米,求出水面以上部分的长度,再用总长度减去河底部分的长度,再减去水面以上部分的长度即可求解。
【详解】
+=(米)
11--
=--
=(米)
答:水深是米。
【点睛】
理解题意,找出水深的求解方法,关键是求出漏出水面部分的长度。
23.900cm2;2250cm3
【分析】
观察图形,做成的无盖长方体盒子的长是30厘米、宽是15厘米、高是5厘米。据此,结合长方体的表面积和体积公式,分别求出这个盒子用了多少铁皮以及容积是多少。
【详
解析:900cm2;2250cm3
【分析】
观察图形,做成的无盖长方体盒子的长是30厘米、宽是15厘米、高是5厘米。据此,结合长方体的表面积和体积公式,分别求出这个盒子用了多少铁皮以及容积是多少。
【详解】
长:40―5―5=30(厘米)
宽:25―5―5=15(厘米)
用的铁皮面积:
30×15+30×5×2+15×5×2
=450+300+150
=900(平方厘米)
容积:30×15×5=2250(立方厘米)
答:这个盒子用了900平方厘米的铁皮,它的容积是2250立方厘米。
【点睛】
本题考查了长方体的表面积和体积,灵活运用长方体的表面积和体积公式是解题的关键。
24.27立方分米
【分析】
珊瑚石的体积等于上升部分水的体积,根据长方体体积=长×宽×高即可求得。
【详解】
5厘米=0.5分米
9×6×0.5
=54×0.5
=27(立方分米)
答:这块珊瑚石的体积
解析:27立方分米
【分析】
珊瑚石的体积等于上升部分水的体积,根据长方体体积=长×宽×高即可求得。
【详解】
5厘米=0.5分米
9×6×0.5
=54×0.5
=27(立方分米)
答:这块珊瑚石的体积是27立方分米。
【点睛】
把不规则物体的体积转化为上升部分水的体积是解答题目的关键。
25.见详解
【分析】
(1)沿着直线对折能够完全重合的图形是轴对称图形,折痕所在的直线叫做轴对称图形的对称轴,画对称轴时,一般用虚线画,据此画图;
(2)先找到顶点,再找到对称点,最后描点连线即可画出对
解析:见详解
【分析】
(1)沿着直线对折能够完全重合的图形是轴对称图形,折痕所在的直线叫做轴对称图形的对称轴,画对称轴时,一般用虚线画,据此画图;
(2)先找到顶点,再找到对称点,最后描点连线即可画出对称图形的另一半;
(3)把平移的图形的各个顶点按照指定的方向和格数平移到新的位置,再把各点按原图顺序连接起来,涂色;即可。
【详解】
【点睛】
掌握画对称轴、轴对称图形和平移后图形的方法是解题的关键。
26.(1)乙;2;;
(2);
(3)答:空气污染的途径主要有两个:有害气体和粉尘。有害气体主要有一氧化碳、二氧化硫等气体,粉尘主要指固体小颗粒。因此我建议:提倡低碳经济,少用劣质煤作燃料,使用清洁能源
解析:(1)乙;2;;
(2);
(3)答:空气污染的途径主要有两个:有害气体和粉尘。有害气体主要有一氧化碳、二氧化硫等气体,粉尘主要指固体小颗粒。因此我建议:提倡低碳经济,少用劣质煤作燃料,使用清洁能源,多种树木等。(答案不唯一)
【分析】
(1)通过观察统计图可知,乙地的空气质量较好;这一周乙地有2天空气质量为优;这一周有3天空气质量为良,共5天达标,根据求一个数是另一个数的几分之几,用除法解答即可。
(2)乙地空气质量不达标的天数有2天,根据求一个数是另一个数的几分之几,用除法解答即可。
(3)找出造成PM2.5的浓度升高的原因,说出可以降低PM2.5的浓度的方法策略即可。(答案不唯一)
【详解】
(1)从图中可以看出,乙地的空气质量较好;通过观察统计表可知,这一周乙地有2天
空气质量为优;这一周有3天空气质量为良,共5天达标,5÷7=,即该地空气质量达标的天数占该周总天数的。
(2)乙地空气质量不达标的天数有2天,2÷7=,即乙地空气质量不达标的天数占该周总天数的。
(3)答:空气污染的途径主要有两个:有害气体和粉尘。有害气体主要有一氧化碳、二氧化硫等气体,粉尘主要指固体小颗粒。因此我建议:提倡低碳经济,少用劣质煤作燃料,使用清洁能源,多种树木等。(答案不唯一)
【点睛】
此题考查的目的是理解掌握折线统计图、统计表的特征及作用,并且能够根据统计图表提供的信息,解决有关的实际问题。
展开阅读全文