收藏 分销(赏)

盐城七年级下册数学期末试卷试卷(word版含答案).doc

上传人:快乐****生活 文档编号:4740280 上传时间:2024-10-11 格式:DOC 页数:32 大小:1.46MB
下载 相关 举报
盐城七年级下册数学期末试卷试卷(word版含答案).doc_第1页
第1页 / 共32页
盐城七年级下册数学期末试卷试卷(word版含答案).doc_第2页
第2页 / 共32页
盐城七年级下册数学期末试卷试卷(word版含答案).doc_第3页
第3页 / 共32页
盐城七年级下册数学期末试卷试卷(word版含答案).doc_第4页
第4页 / 共32页
盐城七年级下册数学期末试卷试卷(word版含答案).doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、盐城七年级下册数学期末试卷试卷(word版含答案)一、解答题1已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 2如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含

2、的代数式表示);若,的度数比的度数大,试计算的度数3如图,已知/,点是射线上一动点(与点不重合),分别平分和,分别交射线于点(1)当时,的度数是_;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律(4)当点运动到使时,请直接写出的度数4问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(

3、不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数5已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED

4、之间的数量关系二、解答题6已知,点为平面内一点,于(1)如图1,点在两条平行线外,则与之间的数量关系为_;(2)点在两条平行线之间,过点作于点如图2,说明成立的理由;如图3,平分交于点平分交于点若,求的度数7如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分,直线、交于点E,则_;(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论8已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅

5、助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)9如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)10如图1,在平面直角坐标系中,且满足,过作轴于(1)求三角形的面积(2)发过作交轴于,且分别平分,如图2,若,求的度数(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由

6、三、解答题11(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两

7、次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)12【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)13在中,点在直线上运动(不与点、重合),点在射线上运动,且,设(1)如图,当点在边上,且时

8、,则_,_;(2)如图,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图中画出图形,并给予证明(画图痕迹用黑色签字笔加粗加黑)14如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互

9、余三角形”,请直接写出的度数15如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:【参考答案】一、解答题1(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根

10、解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则B

11、PB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题2(1) ;(2) ;【分析】(1)由

12、平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟

13、记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键3(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知解析:(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知ABP=2CBP、PBN=2DBP,可得2CBP+2DBP=180-x,即CBD=CBP+DBP=90-x;(3)由AMBN得APB=PBN、ADB=DBN,根

14、据BD平分PBN知PBN=2DBN,从而可得APB:ADB=2:1;(4)由AMBN得ACB=CBN,当ACB=ABD时有CBN=ABD,得ABC+CBD=CBD+DBN,即ABC=DBN,根据角平分线的定义可得ABP=PBN=ABN=2DBN,由平行线的性质可得A+ABN=90,即可得出答案【详解】解:(1)AMBN,A=60,A+ABN=180,ABN=120;(2)AMBN,ABN+A=180,ABN=180-x,ABP+PBN=180-x,BC平分ABP,BD平分PBN,ABP=2CBP,PBN=2DBP,2CBP+2DBP=180-x,CBD=CBP+DBP=(180-x)=90-x

15、;(3)不变,ADB:APB=AMBN,APB=PBN,ADB=DBN,BD平分PBN,PBN=2DBN,APB:ADB=2:1,ADB:APB=;(4)AMBN,ACB=CBN,当ACB=ABD时,则有CBN=ABD,ABC+CBD=CBD+DBN,ABC=DBN,BC平分ABP,BD平分PBN,ABP=2ABC,PBN=2DBN,ABP=PBN=2DBN=ABN,AMBN,A+ABN=180,A+ABN=90,A+2DBN=90,A+DBN=(A+2DBN)=45【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键4(1)APC=+,理由见解析;(2)APC=

16、-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段

17、MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,A

18、QC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键5(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+解析:(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,

19、由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质二、解答题6(1)A+C=90;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BG解析:(1)A+C=9

20、0;(2)见解析;105【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BGDM,根据平行线找角的联系即可求解;先过点B作BGDM,根据角平分线的定义,得出ABF=GBF,再设DBE=,ABF=,根据CBF+BFC+BCF=180,可得2+3+3+=180,根据ABBC,可得+2=90,最后解方程组即可得到ABE=15,进而得出EBC=ABE+ABC=15+90=105【详解】解:(1)如图1,AM与BC的交点记作点O,AMCN,C=AOB,ABBC,A+AOB=90,A+C=90;(2)如图2,过点B作BGDM,BDAM,DBBG,DBG=90,ABD+ABG=

21、90,ABBC,CBG+ABG=90,ABD=CBG,AMCN,BGDM, C=CBG,ABD=C;如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBF=CBF,DBE=ABE,由(2)知ABD=CBG,ABF=GBF,设DBE=,ABF=,则ABE=,ABD=2=CBG,GBF=AFB=,BFC=3DBE=3,AFC=3+,AFC+NCF=180,FCB+NCF=180,FCB=AFC=3+,BCF中,由CBF+BFC+BCF=180得:2+3+3+=180,ABBC,+2=90,=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质的

22、运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导余角和补角计算的应用,常常与等式的性质、等量代换相关联解题时注意方程思想的运用7(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三

23、种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OCF+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=45+xCOE=MOEMOC=45+x2x=45xOEF=COE+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2

24、090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分AONAOE=135xCOE=90AOE=90(135x)=x45OEF=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便8(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(

25、1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键9(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根

26、据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质

27、由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键10(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)

28、45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积4;(2)由于CBy轴,BDAC,则CABABD,即345690,过E作EFAC,则BDACEF,然后利用角平分线的定义可得到341,562,所以AED129045;(3)先根据待定系数法确定直线AC的解析式为yx1,则G点坐标为(0,1),然后利用SPACSAPGSCPG进行计算【详解】解:(1)由题意知:ab,ab40,解得:a2,b2, A(2,0),B(2,0),C(2,2),SABC;(2)CBy轴,BDAC,C

29、ABABD,345690,过E作EFAC,BDAC,BDACEF,AE,DE分别平分CAB,ODB,341,562,AED129045;(3)存在理由如下:设P点坐标为(0,t),直线AC的解析式为ykxb,把A(2,0)、C(2,2)代入得:,解得,直线AC的解析式为yx1,G点坐标为(0,1),SPACSAPGSCPG|t1|2|t1|24,解得t3或1,P点坐标为(0,3)或(0,1)【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等三、解答题11【现象解释】见解析;【尝试探究】BEC = 70;【深入思考

30、】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+解析:【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角形内角和定理即可得出BEC=180-110=70;

31、深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=1

32、80-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键12DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图

33、形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= - 13(1)60,30;(2)BAD=2CDE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC解析:(1)60,30;(2)BAD=2C

34、DE,证明见解析;(3)成立,BAD=2CDE,证明见解析【分析】(1)如图,将BAC=100,DAC=40代入BAD=BAC-DAC,求出BAD在ABC中利用三角形内角和定理求出ABC=ACB=40,根据三角形外角的性质得出ADC=ABC+BAD=100,在ADE中利用三角形内角和定理求出ADE=AED=70,那么CDE=ADC-ADE=30;(2)如图,在ABC和ADE中利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACB-AED=,再由BAD=DAC-BAC得到BAD=n-100,从而得出结论BAD=2CDE;(3)如图,在ABC和ADE中

35、利用三角形内角和定理求出ABC=ACB=40,ADE=AED=根据三角形外角的性质得出CDE=ACD-AED=,再由BAD=BAC+DAC得到BAD=100+n,从而得出结论BAD=2CDE【详解】解:(1)BAD=BAC-DAC=100-40=60在ABC中,BAC=100,ABC=ACB,ABC=ACB=40,ADC=ABC+BAD=40+60=100DAC=40,ADE=AED,ADE=AED=70,CDE=ADC-ADE=100-70=30故答案为60,30(2)BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40在ADE中,DAC=n,ADE=AED=,

36、ACB=CDE+AED,CDE=ACB-AED=40-=,BAC=100,DAC=n,BAD=n-100,BAD=2CDE(3)成立,BAD=2CDE,理由如下:如图,在ABC中,BAC=100,ABC=ACB=40,ACD=140在ADE中,DAC=n,ADE=AED=,ACD=CDE+AED,CDE=ACD-AED=140-=,BAC=100,DAC=n,BAD=100+n,BAD=2CDE【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键14(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明

37、即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:2A+ABC=90;A+2APB=90;2APB+ABC=90;2A+APB=90,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案【详解】(1)证明:在中,BD是的角平分线,是“准互余三角形”;(2),是“准互余三角形”,故正确;, ,不是“准互余三角形”,故错误;设三角形的三个内角分别为,且,三角形是“准互余三角形”,或,“准互余三角形”一定是钝角三角形,故正确;综上所述,正确,故答案为:;(3)APB的度数是10或20或40或110;如图,当2A+ABC=90时,ABP是“准直角三角形”,ABC=50,A=20,APB=110;如图,当A+2APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,APB=40;如图,当2APB+ABC=90时,ABP是“准直角三角形”,ABC=50,APB=20;如图,当2A+APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,所以A=40,所以APB=10;

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服