收藏 分销(赏)

初中七年级下册期末压轴题数学附答案(二)培优试题.doc

上传人:天**** 文档编号:4738456 上传时间:2024-10-11 格式:DOC 页数:51 大小:2.36MB
下载 相关 举报
初中七年级下册期末压轴题数学附答案(二)培优试题.doc_第1页
第1页 / 共51页
初中七年级下册期末压轴题数学附答案(二)培优试题.doc_第2页
第2页 / 共51页
点击查看更多>>
资源描述
一、解答题 1.在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来. 第一组:、; 第二组:、. (1)线段与线段的位置关系是; (2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合). ①当点在线段上运动时,连接、,补全图形,用等式表示、、之间的数量关系,并证明. ②当与面积相等时,求点的坐标. 2.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 3.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分. (1)若点,,都在点的右侧. ①求的度数; ②若,求的度数.(不能使用“三角形的内角和是”直接解题) (2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由. 4.如图①,将一张长方形纸片沿对折,使落在的位置; (1)若的度数为,试求的度数(用含的代数式表示); (2)如图②,再将纸片沿对折,使得落在的位置. ①若,的度数为,试求的度数(用含的代数式表示); ②若,的度数比的度数大,试计算的度数. 5.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由). (2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 . 6.已知,AB∥DE,点C在AB上方,连接BC、CD. (1)如图1,求证:∠BCD+∠CDE=∠ABC; (2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系; (3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值. 7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”. (初步探究) (1)直接写出计算结果:2③=___,()⑤=___; (2)关于除方,下列说法错误的是___ A.任何非零数的圈2次方都等于1;           B.对于任何正整数n,1ⓝ=1; C.3④=4③;   D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-)⑩=___. (2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___; (3)算一算:÷(−)④×(−2)⑤−(−)⑥÷ 8.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以. (1)计算:和; (2)若x是“梦幻数”,说明:等于x的各数位上的数字之和; (3)若x,y都是“梦幻数”,且,猜想:________,并说明你猜想的正确性. 9.阅读理解: 一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数. (1)判断:148    等差数,514335   等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T是等差数,且T是24的倍数,求该等差数T. 10.我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:.例如:可分解成,或,因为,所以是的最佳分解,所以 (1)填空: ; ; (2)一个两位正整数(,,,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有的两位正整数;并求的最大值; (3)填空: ① ;② ; 11.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c. 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空: (3,27)=_______,(5,1)=_______,(2, )=_______. (2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明: 设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n 所以3x=4,即(3,4)=x, 所以(3n,4n)=(3,4). 请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 12.先阅读材料,再解答问题: 我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试: (1)我们知道,,那么,请你猜想:59319的立方根是_______位数 (2)在自然数1到9这九个数字中,________,________,________. 猜想:59319的个位数字是9,则59319的立方根的个位数字是________. (3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________. (4)现在换一个数103823,你能按这种方法得出它的立方根吗? 13.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应. (1)点A的坐标为 ;点的坐标为 ;点的坐标为 ; (2)如图②,是线段上不同于的任意一点,求证:; (3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由. 14.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E. (1)如图1,求证:HG⊥HE; (2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME; (3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数. 15.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒. (1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标. (2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由. 16.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况: (进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A、B两种型号的电风扇的销售单价; (2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台? (3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 17.如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,,并且满足. (1)直接写出点,点的坐标; (2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒.是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由; (3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,,之间的数量关系,直接写出结论. 18.在平面直角坐标系中,为坐标原点.已知两点,且、满足;若四边形为平行四边形,且 ,点在轴上. (1)如图①,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一; (2)如图②,当从点出发,沿轴向上运动,连接、,、、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况). 19.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元. (1)求A、B两种品牌电风扇每台的进价分别是多少元? (2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案? 20.如图,和的度数满足方程组,且,. (1)用解方程的方法求和的度数; (2)求的度数. 21.阅读下面资料: 小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值. 小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=2AB,B1C=2BC,C1A=2CA,根据等高两三角形的面积比等于底之比,所以==2S△ABC=2a,由此继续推理,从而解决了这个问题. (1)直接写出S1= (用含字母a的式子表示). 请参考小明同学思考问题的方法,解决下列问题: (2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积. (3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值. 22.如图,已知和的度数满足方程组,且. (1)分别求和的度数; (2)请判断与的位置关系,并说明理由; (3)求的度数. 23.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y. (1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值; (2)已知关于x,y的方程组,若a≥﹣2,求x+y的取值范围; (3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标. 24.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表: 甲型 乙型 价格(万元/台) x y 处理污水量(吨/月) 300 260 经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元. (1)求x,y的值; (2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案; (3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案. 25.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元. (1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算? (2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算? (3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次? 26.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3). (1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为    ; (2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为    ; (3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是    ; (4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围. 27.阅读下列材料: 问题:已知x﹣y=2,且x>1,y<0 解:∵x﹣y=2.∴x=y+2, 又∵x>1∴y+2>1 ∴y>﹣1 又∵y<0 ∴﹣1<y<0① ∴﹣1+2<y+2<0+2 即1<x<2② ①+②得﹣1+1<x+y<0+2 ∴x+y的取值范围是0<x+y<2 请按照上述方法,完成下列问题: (1)已知x﹣y=3,且x>﹣1,y<0,则x的取值范围是   ;x+y的取值范围是    ; (2)已知x﹣y=a,且x<﹣b,y>2b,根据上述做法得到-2<3x-y<10,求a、b的值. 28.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义: 将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“. 例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6. 根据以上定义,解决下列问题: 已知点P(3,2). (1)若点A(a,2),且d(P,A)=5,求a的值; (2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围; (3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围. 29.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比. 30.对,定义一种新的运算,规定:(其中). (1)若已知,,则_________. (2)已知,.求,的值; (3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围. 【参考答案】***试卷处理标记,请不要删除 一、解答题 1.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,)或(0,). 【分析】 (1)根据两点的纵坐标相等,连线平行x轴进行判断即可; (2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可. 【详解】 解:(1)∵A(−3,3)、C(4,3), ∴AC∥x轴, ∵D(−2,−1)、E(2,−1), ∴DE∥x轴, ∴AC∥DE; (2)①如图,∠CAM+∠MDE=∠AMD. 理由如下: 过点M作MN∥AC, ∵MN∥AC(作图), ∴∠CAM=∠AMN(两直线平行,内错角相等), ∵AC∥DE(已知), ∴MN∥DE(平行公理推论), ∴∠MDE=∠NMD(两直线平行,内错角相等), ∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代换). ②由题意,得:AC=7,DE=4, 设M(0,m), (i)当点M在线段OB上时,BM=3−m,FM=m+1, ∴S△ACM=AC•BM=×7×(3−m)=, S△DEM=DE•FM=×4×(m+1)=2m+2, ∵S△ACM=S△DEM, ∴=2m+2, 解得:m=, ∴M(0,); (ii)当点M在线段OB的延长线上时,BM=m−3,FM=m+1, ∴S△ACM=AC•BM=×7×(m−3)=, S△DEM=DE•FM=×4×(m+1)=2m+2, ∵S△ACM=S△DEM, ∴=2m+2, 解得:m=, ∴M(0,); 综上所述,点M的坐标为(0,)或(0,). 【点睛】 本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想. 2.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 3.(1)①35°;(2)55°;(2)存在,或 【分析】 (1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; ②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°; (2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)①∵AB∥CD, ∴∠CEB+∠ECQ=180°, ∵∠CEB=110°, ∴∠ECQ=70°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°; ②∵AB∥CD, ∴∠QCG=∠EGC, ∵∠QCG+∠ECG=∠ECQ=70°, ∴∠EGC+∠ECG=70°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=50°,∠ECG=20°, ∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°. (2)52.5°或7.5°, 设∠EGC=3x°,∠EFC=2x°, ①当点G、F在点E的右侧时, ∵AB∥CD, ∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°, 则∠GCF=∠QCG-∠QCF=3x°-2x°=x°, ∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°, 则∠ECG=∠GCF=∠PCF=∠PCD=x°, ∵∠ECD=70°, ∴4x=70°,解得x=17.5°, ∴∠CPQ=3x=52.5°; ②当点G、F在点E的左侧时,反向延长CD到H, ∵∠EGC=3x°,∠EFC=2x°, ∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°, ∴∠ECG=∠GCF=∠GCH-∠FCH=x°, ∵∠CGF=180°-3x°,∠GCQ=70°+x°, ∴180-3x=70+x, 解得x=27.5, ∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°, ∴∠PCQ=∠FCQ=62.5°, ∴∠CPQ=∠ECP=62.5°-55°=7.5°, 【点睛】 本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键. 4.(1) ;(2)① ;② 【分析】 (1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可; ②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解. 【详解】 解:(1)如图,由题意可知, ∴, ∵, ∴, , 由折叠可知. (2)①由题(1)可知 , ∵, , 再由折叠可知: , ; ②由可知:, 由(1)知, , 又的度数比的度数大, , , , . 【点睛】 此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键. 5.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】 (1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD; (2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D; (3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】 解:(1)过点E作EF//AB, ∴∠B=∠BEF. ∵∠BEF+∠FED=∠BED, ∴∠B+∠FED=∠BED. ∵∠B+∠D=∠E(已知), ∴∠FED=∠D. ∴CD//EF(内错角相等,两直线平行). ∴AB//CD. (2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB, ∵AB∥CD, ∴AB∥EM∥FN∥GH∥CD, ∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D, ∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D, 即∠E+∠G=∠B+∠F+∠D. 由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等, ∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. 故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D. (3)如图,过点M作EF∥AB,过点N作GH∥AB, ∴∠APM+∠PME=180°, ∵EF∥AB,GH∥AB, ∴EF∥GH, ∴∠EMN+∠MNG=180°, ∴∠1+∠2+∠MNG =180°×2, 依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°. 故答案为:(n-1)•180°. 【点睛】 本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形. 6.(1)证明见解析;(2);(3). 【分析】 (1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证; (2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论; (3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案. 【详解】 证明:(1)如图,过点作, , , , ,即, , ; (2)如图,过点作, , , , ,即, , , , , ; (3)如图,过点作,延长至点, , , , , 平分,平分, , 由(2)可知,, , 又, . 【点睛】 本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5. 【分析】 初步探究: (1)根据除方运算的定义即可得出答案; (2)根据除方运算的定义逐一判断即可得出答案; 深入思考: (1)根据除方运算的定义即可得出答案; (2)根据(1)即可总结出(2)中的规律; (3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案. 【详解】 解:初步探究: (1)2③=2÷2÷2= ()⑤= (2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误; B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误; C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确; D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误; 故答案选择:C. 深入思考: (1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=  5⑥=5÷5÷5÷5÷5÷5= (-)⑩= (2)aⓝ=a÷a÷a…÷a= (3)原式= = = =-5 【点睛】 本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键. 8.(1);(2)见解析;(3) 【分析】 (1)根据的定义,可以直接计算得出; (2)设,得到新的三个数分别是:,这三个新三位数的和为,可以得到:; (3)根据(2)中的结论,猜想:. 【详解】 解:(1)已知,所以新的三个数分别是:, 这三个新三位数的和为, ; 同样,所以新的三个数分别是:, 这三个新三位数的和为, . (2)设,得到新的三个数分别是:, 这三个新三位数的和为, 可得到:,即等于x的各数位上的数字之和. (3)设,由(2)的结论可以得到: , , , 根据三位数的特点,可知必然有: , , 故答案是:. 【点睛】 此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同. 9.(1)不是,是;(2)见解析;(3)432或456或840或864或888 【分析】 (1)根据等差数的定义判定即可; (2)设这个三位数是M,,根据等差数的定义可知,进而得出即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解. 【详解】 解:(1)∵ , ∴148不是等差数, ∵ , ∴514335是等差数; (2)设这个三位数是M,, ∵ , ∴ , ∵ , ∴这个等差数是3的倍数; (3)由(2)知 , ∵T是24的倍数, ∴ 是8的倍数, ∵2c是偶数, ∴只有当35a也是偶数时才有可能是8的倍数, ∴或4或6或8, 当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意; 当时,,此时若,则,若,则,(144、152是8的倍数), 当时,,此时若,则,若,则, (216、244是8的倍数), 当时,,此时若,则,若,则, 若,则,(280,288,296是8的倍数), ∵, ∴若a是偶数,则c也是偶数时b才有意义, ∴和是c是奇数均不符合题意, 当时, , 当时,, 当时,, 当时,, 当时,, 综上,T为432或456或840或864或888. 【点睛】 本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键. 10.(1),1;(2)两位正整数为39,28,17,的最大值为;(3)①;② 【分析】 (1)仿照样例进行计算即可; (2)由题设可以看出交换前原数的十位上数字为a,个位上数字为b,则原数可以表示为,交换后十位上数字为b,个位上数字为a,则交换后数字可以表示为,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a与b的关系式,进而求出所有的两位数,然后求解确定出的最大值即可; (3)根据样例分解计算即可. 【详解】 解:(1) ∵, ∴; ∵, ∴, 故答案为:;1; (2)由题意可得:交换后的数减去交换前的数的差为: , ∴, ∵, ∴或或, ∴t为39,28,17; ∵39=1×39=3×13, ∴; 28=1×28=2×14=4×7, ∴=; 17=1×17, ∴; ∴的最大值. (3)①∵ ∴; ② ∴; 故答案为:; 【点睛】 本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键. 11.(1)3,0,-2 (2) (4,30) 【解析】 分析:(1)根据阅读材料,应用规定的运算方式计算即可; (2)应用规定和同底数幂相乘的性质逆用变形计算即可. 详解:(1)∵33=27 ∴(3,27)=3 ∵50=1 ∴(5,1)=1 ∵2-2= ∴(2,)=-2 (2)设(4,5)=x,(4,6)=y 则,=6 ∴ ∴(4,30)=x+y ∴(4,5)+(4,6)=(4,30) 点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质. 12.(1)两;(2)125,343,729,9;(3)3,39;(4)47 【分析】 (1)根据夹逼法和立方根的定义进行解答; (2)先分别求得1至9中奇数的立方,然后根据
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服