资源描述
人教七年级下册数学期末测试试卷(含答案)
一、选择题
1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3
2.下列生活现象中,不是平移现象的是( )
A.人站在运行着的电梯上 B.推拉窗左右推动
C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉
3.点在第二象限内,则点在第______象限.
A.一 B.二 C.三 D.四
4.下列命题中是假命题的是( )
A.对顶角相等
B.在同一平面内,垂直于同一条直线的两条直线平行
C.同旁内角互补
D.平行于同一条直线的两条直线平行
5.如图,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有( )
A.1个 B.2个 C.3个 D.4个
6.下列计算正确的是( )
A.=±2 B.(﹣3)0=0
C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3
7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ).
A.50° B.40°或130° C.50°或130° D.40°
8.如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90°移动2个单位长度到达点P2;然后逆时针转向90°,移动3个单位长度到达点P3;然后逆时针转向90°,移动4个单位长度到达点P4;…,如此继续转向移动下去.设点Pn(xn,yn),n=1,2,3,…,则x1+x2+x3+…+x2021=( )
A.1 B.﹣1010 C.1011 D.2021
九、填空题
9.25的算术平方根是 _______ .
十、填空题
10.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_____.
十一、填空题
11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________.
十二、填空题
12.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.
十三、填空题
13.如图a是长方形纸带,将纸带沿 EF折叠成图b,再沿BF折叠成图c,若∠AEF=160°,则图 c 中的∠CFE的度数是___度.
十四、填空题
14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.
十五、填空题
15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.
十七、解答题
17.计算下列各题:
(1);
(2)-×;
(3)-++.
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.如图,三角形中,点,分别是,上的点,且,.
(1)求证:;(完成以下填空)
证明:(已知)
(______________),
又(已知)
(等量代换),
(_______________).
(2)与的平分线交于点,交于点,
①若,,则_______;
②已知,求.(用含的式子表示)
二十、解答题
20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.
(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;
(2)求△A1B1C1的面积;
二十一、解答题
21.对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.
(1)仿照以上方法计算:[]= ;[]= .
(2)若[]=1,写出满足题意的x的整数值 .
(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.
二十二、解答题
22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
二十三、解答题
23.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
二十四、解答题
24.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,,,点E、F均落在直线MN上.
(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程.
(2)将三角形DEF沿着NM的方向平移,如图2,求证:;
(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则________.(用含的代数式表示)
二十五、解答题
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、选择题
1.A
解析:A
【分析】
同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.
【详解】
解:∵直线AD,BE被直线BF和AC所截,
∴∠1与∠2是同位角,∠5与∠4是内错角,
故选A.
【点睛】
本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.
2.C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发
解析:C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.
故选:C.
【点睛】
本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.D
【分析】
先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.
【详解】
解:∵点P(m,n)在第二象限,
∴m<0,n>0,
∴-m>0,m-n<0,
∴点Q(-m,m-n)在第四象限.
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
利用对顶角相等、平行线的判定与性质进行判断选择即可.
【详解】
解:A、对顶角相等,是真命题,不符合题意;
B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;
C、同旁内角互补,是假命题,符合题意;
D、平行于同一条直线的两条直线平行,真命题,不符合题意,
故选:C.
【点睛】
本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大.
5.B
【分析】
根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可.
【详解】
∵,
∴,∴正确;
∵,
∴,
∵平分,平分,
∴,,
∴,
∴,
∴,
∴根据已知不能推出,∴错误;错误;
∵,,
∴,
∵,
∴,
∴,∴正确;
即正确的有个,
故选:.
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键.
6.C
【分析】
根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.
【详解】
A.原式=﹣2,故A错误;
B.原式=1,故B错误;
C、(﹣2a2b)2=4a4b2,计算正确;
D、原式=﹣a2,故D错误;
故选C.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
7.C
【分析】
如图,分两种情况进行讨论求解即可.
【详解】
解:①如图所示,AC∥BF,AD∥BE,
∴∠A=∠FOD,∠B=∠FOD,
∴∠B=∠A=50°;
②如图所示,AC∥BF,AD∥BE,
∴∠A=∠BOD,∠B+∠BOD=180°,
∴∠B+∠A=180°,
∴∠B=130°,
故选C.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
8.A
【分析】
根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:、、、、、、
解析:A
【分析】
根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:、、、、、、、的值分别为:1,1,,,3,3,,;
,
,
,
,
,
,
,
,
,
故选:A.
【点睛】
此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.
九、填空题
9.5
【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.
∵52=25, ∴25的算术平方根是5.
考点:算术平方根.
解析:5
【详解】
试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.
∵52=25, ∴25的算术平方根是5.
考点:算术平方根.
十、填空题
10.(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标
解析:(2,﹣1)
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.
【详解】
解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),
故答案为(2,﹣1).
【点睛】
熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.
十一、填空题
11.120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=
解析:120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.
【详解】
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=60°,
∴∠BOC=180°-∠OBC-∠OCB=120°
故答案为120°
【点睛】
本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理
十二、填空题
12.72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的
解析:72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.
十三、填空题
13.120
【分析】
先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC,最后根据即可解题.
【详解】
折叠
∴∠DEF==,
∴
解析:120
【分析】
先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC,最后根据即可解题.
【详解】
折叠
∴∠DEF==,
∴
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14..
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++
解析:.
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++3
=-3-++3
.
故答案为:.
【点晴】
本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.
十五、填空题
15.(4,0)或(﹣4,0)
【详解】
试题解析:设C点坐标为(|x|,0)
∴
解得:x=±4
所以,点C的坐标为(4,0)或(-4,0).
解析:(4,0)或(﹣4,0)
【详解】
试题解析:设C点坐标为(|x|,0)
∴
解得:x=±4
所以,点C的坐标为(4,0)或(-4,0).
十六、填空题
16.【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:
【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;
依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,
可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,
∵20×20=400
∴第421秒时这个点所在位置的坐标为(19,20),
故答案为:(19,20).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.
十七、解答题
17.(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要
解析:(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
十八、解答题
18.(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,
解析:(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.
十九、解答题
19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可
解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②
【分析】
(1)根据平行线的判定及性质即可证明;
(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出;
②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出.
【详解】
解:证明(1)证;
证明:(已知),
(两直线平行,同位角相等),
又(已知)
(等量代换),
(同位角相等,两直线平行),
故答案是:两直线平行,同位角相等;同位角相等,两直线平行.
(2)①与的平分线交于点,交于点,
且,,
,
,
由(1)知,
,
在中,
,
,
,
故答案是:;
②,
,
由(1)知,
,
,
在中,
,
故答案是:.
【点睛】
本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解.
二十、解答题
20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1
解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).
(2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=.
【点睛】
本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二十一、解答题
21.(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:[16]=4;[24]=4;
(2)若[x]=1,写出满足题意的
解析:(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:;
(2)若[]=1,写出满足题意的x的整数值1,2,3;
(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.
故答案为:(1)4;4;(2)1,2,3;(3)3
【点睛】
考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.
二十二、解答题
22.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
二十三、解答题
23.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
二十四、解答题
24.(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠D
解析:(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠DEF=∠ECA=,进而得到,根据三角形内角和即可求解.
【详解】
解:(1)过点C作,
,
,
,
,
,
,
,
,
;
(2)解:,,
又,
,
,
,
,
,
;
(3)如图三角形DEF即为所求作三角形.
∵,
∴,
由(2)得,DE∥AC,
∴∠DEF=∠ECA=,
∵,
∴∠ACB=,
∴ ,
∴∠A=180°-=.
故答案为为:.
【点睛】
本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.
二十五、解答题
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文