1、毕业设计(论文)题 目:输电线路继电保护的设计 学生姓名: 杨飞 学 号:2011350743 专 业: 发电厂及电力系统 系 别: 新能源 班 级: 20113092 指导老师: 关一 完成时期: 年 月 日目录摘要前言1继电保护概论 1.1继电保护的作用 1.2电保护的基本原理和保护装置的组成 1.3对电力系统继电保护的基本要求 1.4 继电保护技术的发展简史 2电网的电流保护 2.1单侧电源网路相间短路的电流保护2.2双侧电源网路相间短路的方向性电流保护2.3中性点直接接地系统中接地短路的方向性电流保护2.4中性点非直接接地系统中单相接地故障的保护3.35KV线路故障分析 2.1常见故障
2、原因分析 2.2 35KV线路继电保护的配置 4电网相间短路的电流保护 4.瞬时电流速断保护 4.2限时电流速断电流护 4.3定时限过电流护 4.4电流三段保护小结5输电线路三段式电流保护的构成及动作过程 5.1零序电流保护 7.电流三段保护小结结 论 致 谢 参考文献 35KV输电线路继电保护设计学生:闵基豪指导老师:陕春玲摘要:电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。电力系统继电保护的基本作用是:
3、全系统范围内,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。随着电力系统的迅速发展。大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉
4、及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。本次毕业设计的题目是35kv线路继电保护的设计。主要任务是为保证电网的安全运行,需要对电网配置完善的继电保护装置.根据该电网的结构、电压等级、线路长度、运行方式以及负荷性质的要求,给35KV的输电线路设计合适的继电保护。关键词:35kv继电保护、方向性电流保护 整定计算、故障分析、设计原理 前言电力系统是由发电、变电、输电、供电、配电、用电等设备和技术组成的一个将一次能源转换为电能的统一系统。电能是现代社会中最重要、也最为方便的能源。而发电厂正是把其他形式的能量转换为电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户
5、,再通过各种用电设备转换为适合用户需要的其他形式的能量。再输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括:继电保护运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、距离保护的整定计算和校正、零序电流保护整定计算和校正、对所选择的保护装置进行综合评价。1、继电保护概论1.1继电保护的作用1.1.1继电保护的概念及任务电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动
6、作于断路器跳闸或发生信号的一种自动装置。继电保护的基本任务是:电力系统发生故障时,自动、快速、有选择地将故障设备从电力系统中切除,保证非故障设备继续运行,尽量缩小停电范围;电力系统出现异常运行状态时,根据运行维护的要求能自动、及时、有选择地发出告警信号或者减负荷、跳闸。1.2继电保护的基本原理和保护装置的组成1.2.1反应系统正常运行与故障时电器元件(设备)一端所测基本参数的变化而构成的原理(单端测量原理,也称阶段式原理)运行参数:I、U、Z 反应 I过电流保护 反应 U低电压保护反应 Z低阻抗保护(距离保护) 1.2.2 反应电气元件内部故障与外部故障(及正常运行)时两端所测电流相位和功率方
7、向的差别而构成的原理(双端测量原理,也称差动式原理) 以A-B线路为例: 规定电流正方向:电流从母线流向线路规定电压正方向:母线指向线路 利用以上差别,可构成差动原理保护。 如:纵联差动保护; 方向高频保护; 相差高频保护等。1.2.3保护装置的组成部分 输入测量逻辑执行 输出信号 信号 整定值1.3对电力系统继电保护的基本要求1.3.1选择性 继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。d3点短路:6动作:有选择性; 5动作:无选择性 如果6拒动,5再动作:有选择性(5作为6的远后备保护) d1点短路:1
8、、2动作:有选择性; 3、4动作:无选择性后备保护(本元件主保护拒动时): (1)由前一级保护作为后备叫远后备. (2)由本元件的另一套保护作为后备叫近后备. 1.3.2速动性继电保护的速动性是指继电保护装置应以尽可能快的速度切除故障设备。故障后,为防止并列运行的系统失步,减少用户在电压降低情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。(快速保护:几个工频周期,微机保护:30ms以下)故障切除总时间等于保护装置和断路器动作时间之和。一般快速保护的动作时间为0.06-0.12s,最快的可达0.02-0.04s;一般断路器动作时间为0.06-0.15s,最快的有0.02-0.06s。目
9、前常用的无时限整套保护的动作时间表带方向或不带方向的电流电压速断保护装置0.06-0.1s各型距离保护装置0.1-1.25s高频保护装置0.04-0.15s线路横差或纵差保护装置0.06-0.1s元件纵差保护装置0.06-0.1s1.3.3灵敏性继电保护的灵敏性是指保护装置对于其应保护的范围内发生故障的反应能力。(保护不该动作情况与应该动作情况所测电气量相差越大灵敏度)。 一般用灵敏系数Klm来衡量灵敏度。1.3.4可靠性继电保护的可靠性是指保护装置在电力系统正常运行时不误动;再规定的保护范围内发生故障时,应可靠动作;而在不属于该保护动作的其他任何情况下,应可靠的不动作。(主保护对动作快速性要
10、求相对较高;后备保护对灵敏性要求相对较高。)1.4继电保护技术发展简史上世纪90年代出现了装于断路器上并直接作用于断路器的一次式的电磁型过电流继电器,本世纪初,随着电力系统的发展,继电器才开始广泛应用于电力系统的保护。这个时期可认为是继电保护技术发展的开端。1901年出现了感应型过电流继电器。1908年提出了比较被保护元件两端的电流差动保护原理。1910年方向性电流保护开始得到应用,在此时期也出现了将电流与电压比较的保护原理,并导致了本世纪29年代初距离保护的出现。随着电力系统载波通讯的发展,在1927年前后,出现了利用高压输电线上高频载波电流传送和比较输电线两端功率或相位的高频保护装置。在5
11、0年代,微波中继通讯开始应用与电力系统,从而出现了利用微波传送和比较输电线两端故障电气量的微波保护。早在50年代就出现了利用故障点产生的行波实现快速继电保护的设想。经过20余年的研究,终于诞生了行波保护装置。显然,随着光纤通讯将在电力系统中的大量采用,利用光纤通道的继电保护必将得到广泛的应用。以上是继电保护原理的发展过程。与此同时,构成继电保护装置的元件、材料、保护装置的结构型式和制造工艺也发生了巨大的变革.50年代以前的继电保护装置都是由电磁型感应型或电动型继电器组成的这些继电器统称为机电式继电器.本世纪50年代初由于半导体晶体管的发展开始出现了晶体管式继电保护装置称之为电子式静态保护装置.
12、70年代是晶体管继电保护装置在我国大量采用的时期满足了当时电力系统向超高压大容量方向发展的需要.80年代后期标志着静态继电保护从第一代(晶体管式)向第二代(集成电路式)的过渡.目前后者已成为静态继电保护装置的主要形式.在60年代末有人提出用小型计算机实现继电保护的设想由此开始了对继电保护计算机算法的大量研究对后来微型计算机式继电保护(简称微机保护)的发展奠定了理论基础.70年代后半期比较完善的微机保护样机开始投入到电力系统中试运行.80年代微机保护在硬件结构和软件技术方面已趋于成熟并已在一些国家推广应用这就是第三代的静态继电保护装置.微机保护装置具有巨大的优越性和潜力因而受到运行人员的欢迎.进
13、入90年代以来它在我国得到了大量的应用将成为继电保护装置的主要型式.可以说微机保护代表着电力系统继电保护的未来将成为未来电力系统保护控制运行调度及事故处理的统一计算机系统的组成部分。2电网的电流保护2.1单侧电源网路相间短路的电流保护在目前我国运行中的电网,采用较多的电压等级有500、330、220、110、66、35、6KV和380/220V,另外750KV的电网正在建设当中。110KV及以上电压等级的电网,主要承担输电任务,形成多电源环网,采用中性点直接接地方式。其主保护主要是由纵联保护担任,全线路上任意点故障都能快速切除。110KV及以下电压等级的电网供电、配电任务,发生单相接地后为保证
14、继续供电,中性点采用非直接接地方式;为了便于继电保护的整定配合和运行管理,通常采用双电源互为备用,正常是单电源供电的运行方式,其主保护一般由阶段式动作特性的电流保护担任。对于图2.3所示的单侧电源供电网络,正常运行时,各条线路中流过所供的负荷电流,越是靠近电源侧的线路,流过的电流越大。负荷的大小取决于用户负荷接入的多少,当用户的负荷同时接入时,形成最大负荷电流。负荷电流与供电电压之间的相位角就是通常所说功率因数角,一般小于30度,各条线路中流过的最大负荷电流幅值如图2.3中折线1所示。由【电力系统分析】课程知识可知,当供电网路中任一点发生三相或两相短路时,流过短路点与电源间线路中的短路电流包括
15、短路工频周期分量、暂态高频分量和衰减直流分量其短路工频周期分量近似计算公式为:随整个电力系统开机方式、保护安装处到电源之间的电网的网路拓扑、负荷水平的变化,造成电流的变化。对继电保护而言称为系统最大的运行方式,对应的系统等值阻抗最小ZS=ZS.min对继电保护而言称为系统最小的运行方式,对应的系统等值阻抗最大ZS=ZS.max比较折线1与曲线2、3可以发现在保护范围内短路电流总是大于负荷电流的幅值,而且大很多。正常运行与短路状态间有明显的差别,流过保护安装处短路电流的大小与下列因素有关:(1) 电力系统运行方式(Zs)的变化(2) 电力系统正常运行状态(EQ)的变化(3) 不同的短路类型(KQ
16、)(4) 随短路点距等值电源的距离变化,短路电流连续变化,越远电流越小,并且在本线路末端和下及线出口短路,电流没有差别。2.2双侧电源网路相间短路的方向性电流保护例如在图2.24所示的双侧电源网路接线中,由于两侧都有电源,为了合上和断开线路,在每条线路的两侧均需装设断路器的保护装置。分析图2.24(a)的k1点发生短路时流过线路的短路功率(一般指短路时母线电压与线路电流相乘得到的感性功率)方向,是从电源经由线路流向短路点与保护2、3、4和保护6、7、8的正方向一致。分析K点和和任意点的短路都有相同的特征,即短路功率的流动方向正是保护应该动作的方向,并且短路点两侧的保护只需要按照单电源的配合方式
17、整定配合及可满足选择性要求,保护中如果加装一个可以判别短路功率流动方向的元件,并且当功率方向有母性流向线路(正方向)时才动作并与电流保护共同工作,便可以快速、有选择性地切除故障称为电流方向性保护。2.3中性点直接接地系统中接地短路的方向性电流保护正常运行的电力系统是三相对称的,其零序、负序电流和电压理论上为零;多数短路三相是不对称的,其零序,负序电流和电压很大,利用故障的不对称也可以找到正常与故障间的差别,并且这种差别是零与很大值得比较差异更明显。利用三相对称的特征,可以构成反应序分量原理的各种保护。当中性点直接接地系统中发生接地短路时,将出现很大的零序电压和电流,利用零序电压、电流来构成接地
18、短路的保护,具有显著的优点,被广泛应用在110KV及以上的电压等级的电网中。(1) 零序电流的一段保护(2) 零序电流的二段保护(3) 零序电流的三段保护方向性零序电流保护方向性零序电流保护原理:在双侧或多侧电源的网路中,电源处变压器的中性点一般至少有一台要接到,由于零序电流的实际流向是由故障点流向各个中性点接地的变压器,因此在变压器接地数目比较多的复杂网路中,就要考虑零序电流保护动作的方向性问题。2.4中性点非直接接地系统中单相接地故障的保护中性点不接地、中性点经消弧线圈接地、中性点经电阻接地等系统都称为非直接接地系统。零序电流和零序功率方向性保护。零序电压保护,在中性点非直接接地系统中,只
19、要本级电压网路中发生单相接地故障,则在同一电压等级的所以发电厂和变电所的母线上,都将出现数值较高的零序电压。利用这一特点,在发电厂和变电所的母线上,一般装设网路单相接地的监视装置。3.35KV线路故障分析3.1.1相间短路这里的“相”指三相对称制交流电源,是由三个单相交流电源所组成的电源系统简称三相交流电源。我国所采用的供电方式称为三相四线制交流电源,三相发电机的绕组作星形连接。各绕组的首端称端线,端线与端线之间的电压称为线电压。各绕组的末端连接在一起称中线,与端线之间的电压称为相电压。相间短路是指端线与端线之间未经过负载(即用电器)而相连接所造成的电源短路。3.1.2接地短路在接地系统中,一
20、相接地较大,可能构成系统短路。这时的接地电流叫做接地短路电流。在高压接地系统中,接地短路电流可能很大。接地短路电流在500A及500A以下者称为小接地短路电流系统;接地短路电流500A以上者均为大接地短路电流系统。3、35KV线路继电保护的配置1相间短路保护采用两相两继电流保护,它是一种阶段式电流保护。以第段、第段电流速断保护作为主保护,以第段过电流保护作为后备保护。2、单相接地故障的保护方式之一4.电网相间短路的电流保护在电网中35kv及以下的较低电压的网络中主要采用三段式电流保护,最主要的优点就是简单、可靠,并且在一般情况下也能够满足快速切除故障的要求。三段式过流保护包括:1、瞬时电流速断
21、保护(简称电流速断保护或电流段)2、限时电流速断保护(电流段)3、过电流保护(电流段)。电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成 一整套保护,称做三段式电流保护,它们的不同是保护范围不同。三段的区别主要在于起动电流的选择原则不同。其中速 断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最 大负荷电流来整定的。 1、瞬时电流速断保护:保护范围小于被保护线路的全长一般设定为被保护线路的全长的85% 2、限时电流速断保护:保护范围是被保护线路的全长或下一回线路的15% 3、过电流保护:保护范围为被保护线路的全长至下一回线路的全长
22、4.1瞬时电流速断保护输电线路发生短路时,电流突然增大,电压降低。利用电流突然增大使保护动作而构成的保护装置,称为电流保护。 通常输电线路电流保护采用阶段式电流保护,采用三套电流保护共同构成三段式电流保护。可以根据具体的情况,只采用速断加过流保护或限时速断加过流保护,也可以三段同时采用。4.1.1 瞬时电流速断保护的工作原理 瞬时电流速断保护又称段电流保护,它是反应电流增大而能瞬时动作切除故障的电流保护。图形符号: 当系统电源电势一定,线路上任一点发生短路故障时,短路电流的大小与短路点至电源之间的电抗(忽略电阻)及短路类型有关,三相短路和两相短路时,流过保护安装地点的短路电流可用下式表示 2-
23、1 2-2 式中 系统等电源相电势;系统等效电源到保护安装处之间的电抗;线路千米长度的正序电抗; 短路点至保护安装处距离。由式(2.1-1)、式(2.1-2)可见,当系统运行方式一定时,和是常数,流过保护安装处的短路电流,是短路点至保护安装处距离的函数。短路点距离电源越远(越大),短路电流值越小。4.1.2原理接线图2.11 瞬时电流速断保护原理接线图 瞬时电流速断保护单相原理接线,如图(2.11)所示,它是由电流继电器KA(测量元件)、中间继电器KM、信号继电器KS组成。 正常运行时,流过线路的电流是负荷电流,其值小于其动作电流,保护不动作。当在被保护线路的速断保护范围内发生短路故障时,短路
24、电流大于保护的动作值,KA常开触电闭合,启动中间继电器KM,KM触电闭合,启动信号继电器KS,并通过断路器的常开辅助触电,接到跳闸线圈YT构成通路,断路器跳闸切除故障线路。 因电流继电器的触电容量比较小,若直接接通跳闸回路,会被破坏,而KM的触点容量较大,可直接接通跳闸回路。另外,考虑当线路上装有管型避雷器时,当雷击线路使避雷器放电时,而避雷器放电的时间约为0.01s,相当于线路发生顺势短路,避雷器放电完毕,线路即恢复正常工作。在这个过程中,瞬时电流速断保护不应误动作,因此可利用带延时0.060.08s中间继电器来增大保护装置固有动作时间,以防止管型避雷器放电引起瞬时电流速断保护的误动作。信号
25、继电器继电器KS的作用以指示保护动作,以便运行人员处理和分析故障。4.1.3瞬时电流速断保护的整定计算 在继电保护装置的整定计算中,一般考虑两种极端的运行方式,即最大运行方式和最小运行方式。 流过保护安装处的短路电流最大时的运行方式称为系统最大运行方式,此时系统阻抗为最小;反之,当流过保护安装处的短路电流最小的运行方式称为系统最小运行方式,此时系统阻抗为最大。图2.21中曲线表示最大运行方式下三相短路电流随的变化曲线,曲线表示最小运行方式下两相短路电流随 的变化曲线。 设保护1、2分别为线路曲线和的瞬时电流速断保护。在线路AB瞬时电流速断保护区内发生故障时,保护1应瞬时动作;在线路BC瞬时保护
26、的保护区内发生故障时,保护2应瞬时动作。 图表2.21曲线表示最大运行方式 曲线表示最小运行方式为保证选择性,对保护1而言,本线路末端短路时应瞬时动作切除故障;在相邻线路首端点短路时,不应动作,而应由保护2动作跳开断路器切除故障但由于被保护线路末端短路与相邻线路出口处短路的短路电流几乎相等,保护1无法区别被保护线路末端短路故障和点的短路故障。因此,瞬时电流速断保护1的动作电流应按大于本线路末端短路时流过保护安装处的最大短路电流来整定,即 (23)式中 保护1无时限电流速断保护的动作电流,又称一次动作电流; 可靠系数,考虑到继电器的整定误差、短路电流计算误差和非周期分量的影响等而引入的大于1的系
27、数,一般取1.21.3。 被保护线路末端末端B母线上三相短路时保护安装测量到的最大短路电流,一般取次暂态短路电流周期分量的有效值。瞬时电流速断保护按式(2.21)确定整定值时,保证了在相邻线路上发生短路故障保护1不会误动作。当然这样选择保护动作电流之后,瞬时电流速断保护必然不能保护线路全长。同时从图(2.21)还可以看出,瞬时电流速断保护范围随系统运行方式和短路类型而变。在最大运行方式下三相短路时,保护范围最大为;在最小运行方式下两相短路时,保护范围最小为。对于短线路,由于线路首末端短路时,短路电流数值相差不大,在最小运行方式下保护范围可能为零。瞬时电流速断保护的选择性是依靠保护整定值保证的瞬
28、时电流速断保护的灵敏系数,是用其最小保护范围来衡量的,规程规定,最小保护范围不应小于线路全长的。图(2.21)中在最小保护区末端(交点N)发生短路故障时,短路电流等于由式(2.21)所决定的保护的动作电流,即 (24)解得最小保护长度 (25)式中 系统最小运行方式下,最大等值电抗; 输电线路千米正序电抗。同理,最大保护区末端短路时,即 (26)解得最大保护长度 (27)式中 系统最大行方式下,最小等值电抗。通常规定,最大保护范围不应小于被保护线路的,最小保护范围不应小于被保护线路全长。整定计算:1) 、动作电流 Iop.1 =Krel*Ikl.max =Krel* = =3.052KA二次侧
29、电流 2) 、最大保护范围为 满足要求。 最小保护范围为满足要求。3)、动作时限:T1=04.1.4总结(1) 瞬时电流速断保护只能保护线路部分,动作的选择性依靠动作值来保证。对于线路变压组,可使全线处于速动保护范围之内。(2) 瞬时电流速断保护的灵敏度以保护区的长度来确定。4.2限时电流速断电流保护 由于瞬时电流速断保护不能保护线路全长,当被保护线路末端附近短路时,必须由其他的保护来切除。为了满足速动的要求,保护的动作时间应尽可能的短。为此,可增加一套带时限的电流速断保护,用以切除瞬时电流速断保护范围以外的短路故障,这种带时限的电流速断保护范围以外的短路故障,称为限时电流速断保护。要求限时电
30、流速断保护被保护线路的全长。5.输电线路三段式电流保护的构成及动作过程线路三段式电流保护的原理接线图及展开图如图5所示。其中KA1、KA2、KS1构成第段瞬时电流速断;KA3、KA4、KT1、KS2构成第段限时电流速断;KA5、KA6、KT2、KS3构成第段定时限过电流。三段保护均作用于一个公共的出口中间继电器KOM,任何一段保护动作均启动KOM,使断路器跳闸,同时相应段的信号继电器动作掉牌,值班人员便可从其掉牌指示判断是哪套保护动作,进而对故障的大概范围作出判断。图5三段式电流保护接线图 (a)原理图 (b)展开图图5三段式电流保护接线图 (a)原理图 (b)参 考 文 献1电力系统继电保护
31、 主 编 张保会教授 西安交通大学 尹项根教授 华中科技大学出版发行:中国电力出版社版 次:2005年5月第一版2、电力系统继电保护原理主 编:贺家李、宋从矩出版发行:中国电力出版社版 次:1994年10月第3版 3、电力系统继电保护主编:税正申、施怀谨出版发行:重庆大学出版社版次:1997年9月第1版、4、供用电网络继电保护 主 编: 马丽英 出版发行: 中国电力出版社 版 次: 2004年9月第1版5、电气工程专业毕业设计指南继电保护分册主 编:韩笑出版发行:中国水利水电出版社版次:2003年3月第1版6、电力系统继电保护 主 编:许建安 陕春玲 出版发行:黄河水利水电出版社版次:2008年12月第1版