收藏 分销(赏)

【教学设计】二次根式的定义.doc

上传人:丰**** 文档编号:4684575 上传时间:2024-10-09 格式:DOC 页数:4 大小:463.51KB
下载 相关 举报
【教学设计】二次根式的定义.doc_第1页
第1页 / 共4页
【教学设计】二次根式的定义.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
更多免费资源请登录荣德基官网()下载或加官方QQ获取 二次根式的定义 【知识与技能】 1.理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 2.理解(a≥0)是非负数和()2=a. 3.理解=a(a≥0)并利用它进行计算和化简. 【过程与方法】 1.提出问题,根据问题给出概念,应用概念解决实际问题. 2.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0),最后运用结论严谨解题. 3.通过具体数据的解答,探究并利用这个结论解决具体问题. 【情感态度】 通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质. 【教学重点】 1.形如(a≥0)的式子叫做二次根式. 2. (a≥0)是一个非负数;()2=a(a≥0)及其运用. 3. 【教学难点】 利用“(a≥0)”解决具体问题. 关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出 一、情境导入,初步认识 回顾: 当a是正数时,表示a的算术平方根,即正数a的正的平方根. 当a是零时,等于0,它表示零的平方根,也叫做零的算术平方根. 当a是负数时,没有意义. 【教学说明】通过对算术平方根的回顾引入二次根式的概念. 二、思考探究,获取新知 概括:(a≥0)表示非负数a的算术平方根,也就是说,(a≥0)是一个非负数,它的平方等于a.即有: (1)≥0;(2)()2=a(a≥0). 形如(a≥0)的式子叫做二次根式. 注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数. 思考:等于什么? 我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律. 概括:当a≥0时,=a;当a<0时,=-a. 三、运用新知,深化理解 1.x取什么实数时,下列各式有意义? 2.计算下列各式的值: 【教学说明】可由学生抢答完成,再由老师总结归纳. 四、师生互动,课堂小结 1.师生共同回顾二次根式的概念及有关性质:(1)()2=a(a≥0);(2)当a≥0时,=a;当a<0时,=-a. 2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 1.布置作业:从教材相应练习和“习题”中选取. 2.完成练习册中本课时练习的“课时作业”部分. 本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法. 4
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服