收藏 分销(赏)

《锐角三角函数(2)》.doc

上传人:丰**** 文档编号:4683898 上传时间:2024-10-09 格式:DOC 页数:3 大小:141.01KB 下载积分:5 金币
下载 相关 举报
《锐角三角函数(2)》.doc_第1页
第1页 / 共3页
《锐角三角函数(2)》.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
28.1 锐角三角形 第二课时 教学目标: 知识与技能: 1、了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比. 2、逐步培养学生观察、比较、分析、概括的思维能力. 过程与方法: 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 情感态度与价值观: 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 重难点: 1.理解余弦、正切的概念. 2.难点:熟练运用锐角三角函数的概念进行有关计算. 教学过程: 一、复习旧知、引入新课 【复习】 1、口述正弦的定义 2、(1)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.则sin∠BAC= ;sin∠ADC= . (2)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。已知AC=,BC=2,那么sin∠ACD=( ) A. B. C. D. 二、探索新知、分类应用 【活动一】余弦、正切的定义 一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值? 如图:Rt△ABC和Rt△A′B′C′,∠C=∠C′ =90°,∠B=∠B′=α, 那么有什么关系? 分析:由于∠C=∠C′ =90o,∠B=∠B′=α, 所以Rt△ABC∽Rt△A′B′C′,,即 结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,∠B的邻边与斜边的比也是一个固定值。 如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与斜边的比叫做∠B的余弦,记作cosB即 把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即 锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数. 【活动二】余弦、正切简单应用 教师解释课本第65页例2题意:如课本图28.1-7,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sinA、cosA、tanA的值. 教师对解题方法进行分析:我们已经知道了直角三角形中两条边的值,要求正弦,余弦,正切值,就要求另一个直角边的值.我们可以通过已知边的值及勾股定理来求. 教师分析完后要求学生自己解题.学生解后教师总结并板书. 三、总结消化、整理笔记 在直角三角形中,当锐角A的大小确定时,∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,把∠A的对边与斜边的比叫做∠A的正切,记作tanA. 四、书写作业、巩固提高 学生做课本第65页练习1、2、3题.分层作业 五、教学后记
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服