资源描述
第一课时 多边形规律
教学内容
多边形规律
课 型
新授课
教学目标
(包括知识、能力、非智力因素及思想教育等方面)
1、 掌握探索图形隐含的数学规律。
2、发现并了解多边形的边数与分割成的三角形的个数、内角和之间的数学规律。
重点、难点和关键
了解多边形的边数与分割成的三角形的个数、内角和之间的数学规律
教具准备
情境图
课时安排
1课时
第 1 课时
教 师 活 动
学 生 活 动
一、创设情境导入新课
复习填空。
1、三角形的内角和是( )度。
2、三角形是由( )条线段围成的。
四边形是由( )条线段围成的。
二、自主探索合作交流
1、下面的多边形分别能分割成多少个三角形?
四边形 五边形 六边形 七边形
师:数一数,这四个图形各有几条边?
师:一个多边形由几条线段围成就成为几边形,所以是四边形、五边形、六边形、七边形。
(1)照样子画出虚线并填表
多边形的边数(条)
4
5
6
7
画出的线段的条数(条)
三角形的个数(个)
师提示:选定一个顶点,向与它不相邻的点依次画线段,就可以将多边形分成若干个三角形。
师:观察表中的数据,你发现了什么?
(2)根据发现的规律填表。
多边形的边数(条)
8
9
10
……
n
画出的线段的条数(条)
三角形的个数(个)
(3)当n=12时,求画出的线段的条数和三角形的个数。
生:180°
生:3条
4条
生:四条边、五条边、六条边、七条边
学生按方法分割三角形
生观察数据,找出规律。
生:画出的线段的条数=多边形的边数-3
画出的线段的条数=三角形的个数-1
三角形的个数=多边形的边数-2
生根据发现的规律填表,全班交流
生:当n=12时,画出的线段的条数=12-3=9条
三角形的个数=12-2=10个
课堂练习
小结及家庭作业
2、多边形的内角和。
(1)四边形的内角和是多少度?
学生试做再交流算法。
师:求四边形的内角和,可以把它分成两个三角形,两个三角形的内角和是360°,所以四边形的内角和是360°。
(2)填表。
多边形的边数(条)
4
5
6
7
……
n
三角形的个数(个)
多边形的内角和
小组合作,完成表格。
生:多边形的内角和=三角形的个数×180°,因为三角形的个数=多边形的边数-2,所以
多边形的内角和=(n-2)×180°
(3)当n=12时,多边形的内角和是多少度?
生:当n=12时,多边形的内角和是(12-2)×180°=1800°
三、练习
练一练
四、总结
师:说一说今天的收获。
板
书
设
计
多边形规律
画出的线段的条数=多边形的边数-3
画出的线段的条数=三角形的个数-1
三角形的个数=多边形的边数-2
多边形的内角和=(n-2)×180°
教
学
反
思
2/ 2
展开阅读全文