收藏 分销(赏)

高中理科数学离散型随机变量及分布列.doc

上传人:快乐****生活 文档编号:4674805 上传时间:2024-10-09 格式:DOC 页数:6 大小:168.51KB
下载 相关 举报
高中理科数学离散型随机变量及分布列.doc_第1页
第1页 / 共6页
高中理科数学离散型随机变量及分布列.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、 离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X可能取的不同值为X取每一个值的概率为,则表 X p 称为离散型随机变量离散型随机变量X,简称X的分布列。 (2)分布列的性质:①;② x 0 1 p p 1-p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X的分布列为, 则称X服从两点分布,并称为成功概率 ②超几何分布:一般的,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则其中,且,称分布列为超几何分布列。如果随机变量X的分布列具有下表的形式,则称随机变量X服从超几何分布 X 0 1 m P 3、随机变量的数学期望(均值)与方差 题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E(ξ)=6.3,则a值为(  ) ξ 4 a 9 P 0.5 0.1 b A. 5   B. 6 C. 7   D. 8 投资成功 投资失败 192次 8次 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=(P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=. 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与,与B,与也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率. 题型三 条件概率 例1 (1)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)= ________. (2)如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=________. 练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布) 例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手. (1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X表示3号歌手得到观众甲、乙、丙的票数之和,“求X≥2”的事件概率. 例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为. (1)求其中甲、乙两名学生选做同一道题的概率; (2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布. 练习: 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X,求X的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 【误区解密】 抽取问题如何区分超几何分布和二项分布? 例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率 (2)用10人的数据估计全级,从全级的学生中任选3人,用X表示优秀人数的个数,求X的分布列 练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在,,,,的市民进行问卷调查,由此得到样本频率分布直方图如图所示. (Ⅰ)求随机抽取的市民中年龄在的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求年龄段抽取的人数; (Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记为年龄在年龄段的人数,求的分布列及数学期望. 2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图. (Ⅰ)求a的值; (Ⅱ)根据样本数据,试估计盒子中小球重量的平均值; (Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服