收藏 分销(赏)

高中数学必修2知识点和例题讲解.doc

上传人:快乐****生活 文档编号:4674796 上传时间:2024-10-09 格式:DOC 页数:16 大小:6.84MB
下载 相关 举报
高中数学必修2知识点和例题讲解.doc_第1页
第1页 / 共16页
高中数学必修2知识点和例题讲解.doc_第2页
第2页 / 共16页
高中数学必修2知识点和例题讲解.doc_第3页
第3页 / 共16页
高中数学必修2知识点和例题讲解.doc_第4页
第4页 / 共16页
高中数学必修2知识点和例题讲解.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、第1讲 第1章 1.1.1 柱、锥、台、球的结构特征知识要点:结 构 特 征图例棱柱(1)两底面相互平行,其余各面都是平行四边形;(2)侧棱平行且相等.圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴;(3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥(1)底面是多边形,各侧面均是三角形;(2)各侧面有一个公共顶点.圆锥(1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台(1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台(1)两底面相互平行;(2)是用一个平

2、行于圆锥底面的平面去截圆锥,底面和截面之间的部分.球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.1.下列说法错误的是( )A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 答案:D2.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为_ cm. 答案:123.在本节我们学过的常见几何体中,如果用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是_.答案:棱锥、棱柱、棱台、圆锥第2讲 1.1.2 简单组合体的结构特征例题精讲:【例1】在四棱锥

3、的四个侧面中,直角三角形最多可有( ). A. 1个 B. 2个 C. 3个 D. 4个 选D.【例2】已知球的外切圆台上、下底面的半径分别为,求球的半径. 解:圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R+r,梯形的高即球的直径为,所以,球的半径为.第3讲 1.2.2 空间几何体的三视图例题精讲:【例1】画出下列各几何体的三视图:解:【例2】画出下列三视图所表示的几何体.解:【例3】如图,图(1)是常见的六角螺帽,图(2)是一个机器零件(单位:cm),所给的方向为物体的正前方. 试分别画出它们的三视图.解第4讲 1.2.3 空间几何体的直观图知识要点:“直观图”最常用的画法是斜二

4、测画法,由其规则能画出水平放置的直观图,其实质就是在坐标系中确定点的位置的画法. 基本步骤如下:(1) 建系:在已知图形中取互相垂直的x轴和y轴,得到直角坐标系,直观图中画成斜坐标系,两轴夹角为.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x或y轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.第5讲 1.3.1 柱体、锥体、台体的表面积学习目标:了解棱柱、棱锥、台的表面积的计算公式(不要求记忆公式);能运用柱、锥、台的表面积进行计算和解决有关实际问题.知识要点:表面积相关公式表面积相关公式棱柱圆柱

5、(r:底面半径,h:高)棱锥圆锥 (r:底面半径,l:母线长)棱台圆台(r:下底半径,r:上底半径,l:母线长)例题精讲:【例1】已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.解:【例2】一个正三棱柱的三视图如右图所示,求这个正三棱柱的表面积.解:.第6讲 1.3.1 柱体、锥体、台体的体积知识要点:1. 体积公式:体积公式体积公式棱柱圆柱棱锥圆锥棱台圆台2. 柱、椎、台之间,可以看成一个台体进行变化,当台体的上底面逐渐收缩为一个点时,它就成了锥体;当台体的上底面逐渐扩展到与下底面全等时,它就成了柱体. 因而体积会有以下的关系: .例题精讲:【例1】一个长

6、方体的相交于一个顶点的三个面的面积分别是2、3、6,则长方体的体积是 .解:设长方体的长宽高分别为,则,三式相乘得.所以,长方体的体积为6.【例2】一块边长为10的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域. 解:如图,设所截等腰三角形的底边边长为.在中,, 所以, 于是.依题意函数的定义域为.【例3】一个无盖的圆柱形容器的底面半径为,母线长为6,现将该容器盛满水,然后平稳缓慢地将容器倾斜让水流出,当容器中的水是原来的时,圆柱的母线与水平面所成的角的大小为 .解:容器中水的体积为.流出水的

7、体积为,如图,.设圆柱的母线与水平面所成的角为,则,解得.第7讲 1.3.2球的体积和表面积知识要点:1. 表面积: (R:球的半径). 2. 体积:.例题精讲:【例2】表面积为的球,其内接正四棱柱的高是,求这个正四棱柱的表面积.解:设球半径为,正四棱柱底面边长为,则作轴截面如图,又,.【例3】设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( ). ABCD【解】由已知可得,A、B、C、D在球的一个小圆上. AB=BC=CD=DA=3, 四边形为正方形. 小圆半径. 由得,解得. 球的体积. 所以选A.第8讲 2.1

8、.1 平面知识要点:1. 点在直线上,记作;点在平面内,记作;直线在平面内,记作.2. 平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:公理1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言3.公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.例题精讲:【例1】如果一条直线与两条平行直线都相交,那

9、么这三条直线是否共面?【例2】空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,已知EF和GH交于P点,求证:EF、GH、AC三线共点. 解:PEF,EF面ABC,P面ABC. 同理P面ADC. P在面ABC与面ADC的交线上,又 面ABC面ADC=AC, PAC,即EF、HG、AC三线共点.【例3】求证:两两相交且不过同一个点的三条直线必在同一平面内.已知:直线两两相交,交点分别为,求证:直线共面. 证明:因为A,B,C三点不在一条直线上,所以过A,B,C三点可以确定平面 因为A,B,所以AB 同理BC ,AC .所以AB,BC,CA三直线共面【例4】在正方体中,(1)

10、与是否在同一平面内?(2)点是否在同一平面内?(3)画出平面与平面的交线,平面与平面的交线. 解:(1)在正方体中, 由公理2的推论可知,与可确定平面,与在同一平面内. (2)点不共线,由公理3可知,点可确定平面, 点在同一平面内. (3), 点平面,平面,又平面,平面, 平面平面,同理平面平面第9讲 2.1.2 空间中直线与直线之间的位置关系知识要点:1.空间两条直线的位置关系:2. 已知两条异面直线,经过空间任一点作直线,把所成的锐角(或直角)叫异面直线所成的角(或夹角). 所成的角的大小与点的选择无关,为了简便,点通常取在异面直线的一条上;异面直线所成的角的范围为,如果两条异面直线所成的

11、角是直角,则叫两条异面直线垂直,记作. 求两条异面直线所成角的步骤可以归纳为四步:选点平移定角计算.例题精讲:【例1】已知异面直线a和b所成的角为50,P为空间一定点,则过点P且与a、b所成角都是30的直线有且仅有( ). A. 1条 B. 2条 C. 3条 D. 4条解:过P作a,b,若Pa,则取a为,若Pb,则取b为这时,相交于P点,它们的两组对顶角分别为50和130. 记,所确定的平面为,那么在平面内,不存在与,都成30的直线 过点P与,都成30角的直线必在平面外,这直线在平面的射影是,所成对顶角的平分线其中射影是50对顶角平分线的直线有两条l和,射影是130对顶角平分线的直线不存在故答

12、案选B.【例2】如图正方体中,E、F分别为D1C1和B1C1的中点,P、Q分别为AC与BD、A1C1与EF的交点. (1)求证:D、B、F、E四点共面;(2)若A1C与面DBFE交于点R,求证:P、Q、R三点共线.证明:(1) 正方体中,. 又 中,E、F为中点, . , 即D、B、F、E四点共面.(2) , .又 , , . 即P、Q、R三点共线【例3】已知直线a/b/c,直线d与a、b、c分别相交于A、B、C,求证:a、b、c、d四线共面.证明:因为a/b,由公理2的推论,存在平面,使得.又因为直线d与a、b、c分别相交于A、B、C,由公理1,.假设,则, 在平面内过点C作,因为b/c,则

13、,此与矛盾. 故直线.综上述,a、b、c、d四线共面.【例4】如图中,正方体ABCDA1B1C1D1,E、F分别是AD、AA1的中点.(1)求直线AB1和CC1所成的角的大小;(2)求直线AB1和EF所成的角的大小.解:(1)如图,连结DC1 , DC1AB1, DC1 和CC1所成的锐角CC1D就是AB1和CC1所成的角. CC1D=45, AB1 和CC1所成的角是45.(2)如图,连结DA1、A1C1, EFA1D,AB1DC1, A1DC1是直线AB1和EF所成的角. A1DC1是等边三角形, A1DC1=60,即直线AB1和EF所成的角是60.第10讲 2.1.3 直线与平面、平面与

14、平面位置关系知识要点:1. 直线与平面的位置关系:(1)直线在平面内(有无数个公共点);(2)直线与平面相交(有且只有一个公共点);(3)直线与平面平行(没有公共点). 分别记作:;.2. 两平面的位置关系:平行(没有公共点);相交(有一条公共直线).分别记作;.例题精讲:【例1】已知空间边边形ABCD各边长与对角线都相等,求异面直线AB和CD所成的角的大小. 解:分别取AC、AD、BC的中点P、M、N连接PM、PN,由三角形的中位线性质知PNAB,PMCD,于是MPN就是异面直线AB和CD成的角(如图所示).连结MN、DN,设AB=2, PM=PN=1.而AN=DN=,由MNAD,AM=1,

15、得MN=,MN2=MP2+NP2,MPN=90.异面直线AB、CD成90角.【例2】在空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是CB、CD的中点,若AC + BD = a ,ACBD =b,求.解:四边形EFGH是平行四边形, =2=.ABCDEFGH【例3】已知空间四边形ABCD中,E、H分别是AB、AD的中点,F、G分别是BC、CD上的点,且.求证:(1)E、F、G、H四点共面;(2)三条直线EF、GH、AC交于一点. 证明:(1) 在ABD和CBD中, E、H分别是AB和CD的中点, EHBD.又 , FGBD. EHFG. 所以,E、F、G、H四点共面.第11讲

16、2.2.1 直线与平面平行的判定知识要点:1. 定义:直线和平面没有公共点,则直线和平面平行.2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行. 符号表示为:. 图形如右图所示.例题精讲:【例1】已知P是平行四边形ABCD所在平面外一点,E、F分别为AB、PD的中点,求证:AF平面PEC证明:设PC的中点为G,连接EG、FG. F为PD中点, GFCD且GF=CD. ABCD, AB=CD, E为AB中点, GFAE, GF=AE, 四边形AEGF为平行四边形. EGAF, 又 AF平面PEC, EG平面PEC, AF平面PEC.【例2】在正方体ABCD-A1B1

17、C1D1中,E、F分别为棱BC、C1D1的中点. 求证:EF平面BB1D1D. 证明:连接AC交BD于O,连接OE,则OEDC, OE=DC. DCD1C1, DC=D1C1 , F为D1C1的中点,ABC D E F GM O OED1F, OE=D1F, 四边形D1FEO为平行四边形. EFD1O. 又 EF平面BB1D1D, D1O平面BB1D1D, EF平面BB1D1D.【例3】如图,已知、分别是四面体 的棱、的中点,求证:平 面. 证明:如右图,连结,交于点,连结,在中,、分别是、中点, ,为中点, 为中点,在中,、为、中点, ,又平面,平面, 平面.点评:要证明直线和平面平行,只须

18、在平面内找到一条直线和已知直线平行就可以了. 注意适当添加辅助线,重视中位线在解题中的应用.【例4】如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN/平面PAD;(2)若,求异面直线PA与MN所成的角的大小.解:(1)取PD的中点H,连接AH,由N是PC的中点, NH. 由M是AB的中点, NHAM, 即AMNH为平行四边形. . 由, .(2) 连接AC并取其中点为O,连接OM、ON, OMBC,ONPA, 所以就是异面直线PA与MN所成的角,且MONO. 由,, 得OM=2,ON=所以,即异面直线PA与MN成30的角点评:已知中点,牢牢抓住中位线

19、得到线线平行,通过线线平行转化为线面平行. 求两条异面直线所成角,方法的关键也是平移其中一条或者两条直线,得到相交的线线角,通过解三角形而得.第12讲 2.2.2 平面与平面平行的判定知识要点:面面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行用符号表示为:.例题精讲:【例1】如右图,在正方体ABCDA1B1C1D1中,M、N、P分别是C1C、B1C1、C1D1的中点,求证:平面MNP平面A1BD.A1AB1BC1CD1DGEF证明:连结B1D1,P、N分别是D1C1、B1C1的中点, PNB1D1.又B1D1BD,PNBD. 又PN不在平面A1BD上,PN平

20、面A1BD.同理,MN平面A1BD. 又PNMN=N, 平面PMN平面A1BD.【例2】正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1平面FBD 证明:(1)由B1BDD1,得四边形BB1D1D是平行四边形,B1D1BD,又BD 平面B1D1C,B1D1平面B1D1C,BD平面B1D1C同理A1D平面B1D1C而A1DBDD,平面A1BD平面B1CD(2)由BDB1D1,得BD平面EB1D1取BB1中点G,AEB1G从而得B1EAG,同理GFADAGDFB1EDFNMPDCQBADF平面EB1D1平面EB1

21、D1平面FBD 【例3】已知四棱锥P-ABCD中, 底面ABCD为平行四边形. 点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD. 求证:平面MNQ平面PBC. 证明: PM:MA=BN:ND=PQ:QD. MQ/AD,NQ/BP,而BP平面PBC,NQ 平面PBC, NQ/平面PBC.又ABCD为平行四边形,BC/AD, MQ/BC,而BC平面PBC,MQ 平面PBC, MQ/平面PBC.由MQNQ=Q,根据平面与平面平行的判定定理, 平面MNQ平面PBC.点评:由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面

22、面平行. 一般证“面面平面”问题最终转化为证线与线的平行.第13讲 2.2.3 直线与平面平行的性质知识要点:线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. 即:.例题精讲:【例1】经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1EB1B证明: , .又 , .则.【例2】如图,求证:.ABCD证明:连结,直线和可以确定一个平面,记为, 又, 四边形为平行四边形, .第14讲 2.2.4 平面与平面平行的性质知识要点:1. 面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行

23、. 用符号语言表示为:.2. 其它性质:; ;夹在平行平面间的平行线段相等.例题精讲:【例1】如图,设平面平面,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C,B、D. 求证:MN. 证明:连接BC,取BC的中点E,分别连接ME、NE,则MEAC, ME平面,又 NEBD, NE, 又MENE=E,平面MEN平面, MN平面MEN,MN. 【例2】如图,A,B,C,D四点都在平面a,b外,它们在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,在b内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形 证明: A,B,C,D四点在b内的射影A2,B2,C2

24、,D2在一条直线上,A,B,C,D四点共面又A,B,C,D四点在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,平面ABB1A1平面CDD1C1AB,CD是平面ABCD与平面ABB1A1,平面CDD1C1的交线ABCD同理ADBC 四边形ABCD是平行四边形第15讲 2.3.1 直线与平面垂直的判定知识要点:1. 定义:如果直线与平面内的任意一条直线都垂直,则直线与平面互相垂直,记作. 平面的垂线,直线的垂面,它们的唯一公共点叫做垂足.(线线垂直线面垂直)2. 判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 符号语言表示为:若,B,则3. 斜线和平面所成的

25、角,简称“线面角”,它是平面的斜线和它在平面内的射影的夹角. 求直线和平面所成的角,几何法一般先定斜足,再作垂线找射影,然后通过解直角三角形求解,可以简述为“作(作出线面角)证(证所作为所求)求(解直角三角形)”. 通常,通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线是产生线面角的关键.例题精讲:【例1】四面体中,分别为的中点,且,求证:平面. 证明:取的中点,连结,分别为的中点,.又,在中,又,即,平面.【例2】已知棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成的角的正弦值.解:取CD的中点F,连接EF交平面于O,连AO.由已知正方体

26、,易知平面,所以为所求.在中,.所以直线AE与平面所成的角的正弦值为.【例3】三棱锥中,平面ABC,垂足为O,求证:O为底面ABC的垂心.证明:连接OA、OB、OC, 平面ABC, .又 , ,得, O为底面ABC的垂心.点评:此例可以变式为“已知,求证”,其思路是接着利用射影是垂心的结论得到后进行证明. 三条侧棱两两垂直时,也可按同样的思路证出.第16讲 2.3.2 平面与平面垂直的判定知识要点:1. 定义:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角. (简记)2. 二面角的平面角:在二面

27、角的棱上任取一点,以点为垂足,在半平面内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角. 范围:.3. 定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作.4. 判定:一个平面过另一个平面的垂线,则这两个平面垂直. (线面垂直面面垂直)例题精讲:【例1】已知正方形ABCD的边长为1,分别取边BC、CD的中点E、F,连结AE、EF、AF,以AE、EF、FA为折痕,折叠使点B、C、D重合于一点P.(1)求证:APEF;(2)求证:平面APE平面APF.证明:(1)如右图,APE=APF=90,PEPF=P, PA平面PEF. EF平面PEF,PAEF.(2

28、)APE=EPF=90,APPF=P,PE平面APF.又PE平面PAE,平面APE平面APF.【例2】如图, 在空间四边形ABCD中, 分别是的中点,求证:平面平面. 证明:为AC中点,所以. 同理可证 面BGD. 又易知EF/AC,则面BGD. 又因为面BEF,所以平面平面.第17讲 2.3.3 线面、面面垂直的性质知识要点:1. 线面垂直性质定理:垂直于同一个平面的两条直线平行. (线面垂直线线平行)2. 面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号语言表示为:若,则.(面面垂直线面垂直)例题精讲:ACBa【例1】把直角三角板ABC的直角边BC放置

29、于桌面,另一条直角边AC与桌面所在的平面垂直,a是内一条直线,若斜边AB与a垂直,则BC是否与a垂直?解:注:若BC与a垂直,同理可得AB与a也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法: “线线垂直线面垂直线线垂直”.【例2】如图,AB是圆O的直径,C是圆周上一点,PA平面ABC. (1)求证:平面PAC平面PBC;(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面. 解:(1)证明:C是AB为直径的圆O的圆周上一点,AB是圆O的直径, BCAC.又PA平面ABC,BC平面ABC,BCPA,从而BC平面PAC. BC 平面PB

30、C, 平面PAC平面PBC.(2)平面PAC平面ABCD;平面PAC平面PBC;平面PAD平面PBD;平面PAB平面ABCD;平面PAD平面ABCD.第18讲 第3章 3.1.1 倾斜角与斜率知识要点:1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0. 则直线l的倾斜角的范围是.2. 倾斜角不是90的直线的斜率,等于直线的倾斜角的正切值,即. 如果知道直线上两点,则有斜率公式. 特别地是,当,时,直线与x轴垂直,斜率k不存在;当,时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角=90时,斜率不存在

31、,即直线与y轴平行或者重合. 当=90时,斜率k=0;当时,斜率,随着的增大,斜率k也增大;当时,斜率,随着的增大,斜率k也增大. 这样,可以求解倾斜角的范围与斜率k取值范围的一些对应问题.例题精讲:【例2】已知过两点, 的直线l的倾斜角为45,求实数的值.解: , ,解得 或. 但当时,A、B重合,舍去 【例3】已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值解: , . A、B、C三点在一条直线上, , 即, 解得或.第19讲 3.1.2 两条直线平行与垂直的判定知识要点:1. 对于两条不重合的直线 、,其斜率分别为、,有:(1);(2).2. 特例:两条直

32、线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;.例题精讲:【例1】四边形ABCD的顶点为、,试判断四边形ABCD的形状.解:AB边所在直线的斜率,CD边所在直线的斜率,BC边所在直线的斜率,DA边所在直线的斜率, , AB/CD,BC/DA,即四边形ABCD为平行四边形.又 , ABBC,即四边形ABCD为矩形.【例2】已知的顶点,其垂心为,求顶点的坐标解:设顶点A的坐标为 , , 即 ,化简为,解之得:. A的坐标为.【例3】(1)已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行?(2)的倾斜角为45,经过点P(-2,

33、-1)、Q(3,-6),问与是否垂直?点评:当与的斜率存在时,. 斜率不存在时,进行具体的分析. 由此先计算出斜率,根据斜率的相等或互为负倒数,从而判别平行或垂直.第20讲 3.2.1 直线的点斜式方程知识要点:1. 点斜式:直线过点,且斜率为k,其方程为.2. 斜截式:直线的斜率为k,在y轴上截距为b,其方程为.3. 点斜式和斜截式不能表示垂直x轴直线. 若直线过点且与x轴垂直,此时它的倾斜角为90,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为,或. 4. 注意:与是不同的方程,前者表示的直线上缺少一点,后者才是整条直线.例题精讲:【例1】写出下列点斜式直线方程: (1)经过点,斜

34、率是4;(2)经过点,倾斜角是.【例2】已知直线.(1)求直线恒经过的定点;(2)当时,直线上的点都在轴上方,求实数的取值范围.解:(1)由,易知时,所以直线恒经过的定点.(2)由题意得,解得.【例3】光线从点A(3,4)发出,经过x轴反射,再经过y轴反射,光线经过点 B(2,6),求射入y轴后的反射线的方程.解:A(3,4)关于x轴的对称点A1(3,4)在经x轴反射的光线上,同样A1(3,4)关于y轴的对称点A2(3,4)在经过射入y轴的反射线上,k=2. 故所求直线方程为y6=2(x+2), 即2x+y2=0.点评:由物理中光学知识知,入射线和反射线关于法线对称. 光线的反射问题,也常常需

35、要研究对称点的问题. 注意知识间的相互联系及学科间的相互渗透.【例4】已知直线经过点,且与两坐标轴围成的三角形的面积为5,求直线的方程解:由已知得与两坐标轴不垂直直线经过点, 可设直线的方程为,即.则直线在轴上的截距为,在轴上的截距为.根据题意得,即.当时,原方程可化为,解得;当时,原方程可化为,此方程无实数解.故直线的方程为,或.即或.点评:已知直线过一点时,常设其点斜式方程,但需注意斜率不存在的直线不能用点斜式表示,从而使用点斜式或斜截式方程时,要考虑斜率不存在的情况,以免丢解. 而直线在坐标轴上的截距,可正、可负,也可以为零,不能与距离混为一谈,注意如何由直线方程求其在坐标轴上的截距.第

36、21讲 3.2.2 直线的两点式方程知识要点:1. 两点式:直线经过两点,其方程为, 2. 截距式:直线在x、y轴上的截距分别为a、b,其方程为.3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.4. 线段中点坐标公式.例题精讲:【例1】已知顶点为,求过点且将面积平分的直线方程.解:求出中点的坐标,则直线即为所求,由直线方程的两点式得,即.【例2】菱形的两条对角线长分别等于8和6,并且分别位于x轴和y轴上,求菱形各边所在的直线的方程解:设菱形的四个顶点为A、B、C、D,如右图所示. 根据菱形的对角线互相垂直且平分可知,顶点A、B、C、D在坐标轴上,且A、C关于原点

37、对称,B、D也关于原点对称.所以A(,0),C(,0),B(0,3),D(0,3). 由截距式,得直线AB的方程:1,即3xy120;直线BC的方程:1, 即3xy120;直线AD方程:1, 即3 xy120;直线CD方程:1即3 xy120.第22讲 3.2.3 直线的一般式方程知识要点:1. 一般式:,注意A、B不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y轴上截距为的直线.2 与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为. 过点的直线可写为.经过点,且平行于直线l的直线方程是;经过点,且垂直于直线l的直线方程是.3. 已知直线的方程分别是:(不同时为0)

38、,(不同时为0),则两条直线的位置关系可以如下判别:(1); (2);(3)与重合; (4)与相交.如果时,则;与重合;与相交. 例题精讲:【例1】已知直线:,:,问m为何值时:(1);(2).解:(1)时,则,解得m0.(2)时,, 解得m1.【例2】(1)求经过点且与直线平行的直线方程;(2)求经过点且与直线垂直的直线方程.解:(1)由题意得所求平行直线方程,化为一般式.(2) 由题意得所求垂直直线方程,化为一般式.【例3】已知直线l的方程为3x+4y12=0,求与直线l平行且过点(1,3)的直线的方程分析:由两直线平行,所以斜率相等且为,再由点斜式求出所求直线的方程. 解:直线l:3x+

39、4y12=0的斜率为, 所求直线与已知直线平行, 所求直线的斜率为,又由于所求直线过点(1,3),所以,所求直线的方程为:,即.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式而直接写出方程,即,再化简而得.第23讲 3.3.1 两条直线的交点坐标知识要点:1. 一般地,将两条直线的方程联立,得到二元一次方程组. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程为直线系,所有的直

40、线恒过一个定点,其定点就是与的交点.例题精讲:【例1】判断下列直线的位置关系. 如果相交,求出交点坐标.直线l1: , l2: .解:解方程组,消y得 .当时,方程组无解,所以两直线无公共点,/.当时,方程组无数解,所以两直线有无数个公共点,l1与l2重合.当且,方程组有惟一解,得到, l1与l2相交.当时,/;当时,l1与l2重合;当且,l1与l2相交,交点是.【例2】求经过两条直线和的交点,且平行于直线的直线方程.解:设所求直线的方程为,整理为. 平行于直线, ,解得.则所求直线方程为.第24讲 3.3.2 两点间的距离知识要点:1. 平面内两点,则两点间的距离为:.特别地,当所在直线与x

41、轴平行时,;当所在直线与y轴平行时,;当在直线上时,.2. 坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系.例题精讲:【例1】在直线上求一点,使它到点的距离为,并求直线的方程.解: 点在直线上, 可设,根据两点的距离公式得,解得,直线PM的方程为,即.【例2】直线2xy4=0上有一点P,求它与两定点A(4,1),B(3,4)的距离之差的最大值.解:找A关于l的对称点A,AB与直线l的交点即为所求的P点. 设, 则,解得, 所以线段.【例3】已知AO是ABC中BC边的中线,证明|AB|AC|=2(|AO|OC|).

42、解:以O为坐标原点,BC为x轴,BC的中垂线为y轴,建立如图所示坐标系xOy.yxB(-c,0)A(a,b)C(c,0)O设点A(a,b)、B(-c,0)、C(c,0),由两点间距离公式得:|AB|=,|AC|=,|AO|=, |OC|=c. |AB|AC|=, |AO|OC|=. |AB|AC|=2(|AO|OC|).第25讲 3.3.3 点到直线的距离及两平行线距离知识要点:1. 点到直线的距离公式为.2. 利用点到直线的距离公式,可以推导出两条平行直线,之间的距离公式,推导过程为:在直线上任取一点,则,即. 这时点到直线的距离为.例题精讲:【例1】求过直线和的交点并且与原点相距为1的直线l的方程.解:设所求直线l的方程为, 整理得.由点到直线的距离公式可知,, 解得.代入所设,得到直线l的方程为.【例2】在函数的图象上求一点P,使P到直线的距离最短,并求这个最短的距离.解:直线方程化为. 设, 则点P到直线的距离为.当时,点到直线的距离最短,最短距离为.【例3】求证直线L:与点的距离不等于3.解:由点线距离公式,得=.假设,得到,整理得. , 无实根. ,即直线L与点的距离不等于3.点评:此解妙在反证法思路的运用. 先由点线距离公式求出距

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服