资源描述
高中数学立体几何大题训练
1.如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
(Ⅱ)证明:平面ABM⊥平面A1B1M1
2.如图, 在矩形中,点分别在线段上,.沿直线将 翻折成,使平面.(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长。
3.如图,直三棱柱中,,,为的中点,为上的一点,.
(Ⅰ)证明:为异面直线与的公垂线;
(Ⅱ)设异面直线与的夹角为45°,求二面角的大小.
4.如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
5.如图,棱柱的侧面是菱形,
(Ⅰ)证明:平面平面;
(Ⅱ)设是上的点,且平面,求的值.
6.已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB, N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
7.如图△BCD与△MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。
(1) 求点A到平面MBC的距离;
(2) 求平面ACM与平面BCD所成二面角的正弦值。
8.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
9.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小。
10.已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.
(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱锥M-OBC的体积. w_w w. k#s5_u.c o*m
参考答案
1.
2.(Ⅰ)解:取线段EF的中点H,连结,因为=及H是EF的中点,所以,
又因为平面平面.如图建立空间直角坐标系A-xyz
则(2,2,),C(10,8,0),
F(4,0,0),D(10,0,0).
故=(-2,2,2),=(6,0,0).
设=(x,y,z)为平面的一个法向量,
-2x+2y+2z=0
所以
6x=0.
取,则。
又平面的一个法向量,
故。
所以二面角的余弦值为
(Ⅱ)解:设则,
因为翻折后,与重合,所以,
故, ,得,
经检验,此时点在线段上,所以。
方法二:
(Ⅰ)解:取线段的中点,的中点,连结。
因为=及是的中点,所以
又因为平面平面,所以平面,
又平面,故,
又因为、是、的中点,
易知∥,所以,于是面,
所以为二面角的平面角,
在中,=,=2,=
所以.
故二面角的余弦值为。
(Ⅱ)解:设,
因为翻折后,与重合,所以,
而,
得,经检验,此时点在线段上,
所以。
3.(I)连接A1B,记A1B与AB1的交点为F.
因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1. ………………3分
作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.
又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.
所以DE为异面直线AB1与CD的公垂线.
(II)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°
设AB=2,则AB1=,DG=,CG=,AC=.
作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1-AC1-B1的平面角,由此可求出二面角大小
4.解 (Ⅰ)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.
又BC∥AD,∴EF∥AD,
又∵AD平面PAD,EF平面PAD,
∴EF∥平面PAD.
(Ⅱ)连接AE,AC,EC,过E作EG∥PA交AB于点G,
则BG⊥平面ABCD,且EG=PA.
在△PAB中,AD=AB,PAB°,BP=2,∴AP=AB=,EG=.
∴S△ABC=AB·BC=××2=,
∴VE-ABC=S△ABC·EG=××=.
5. 解:(Ⅰ)因为侧面BCC1B1是菱形,所以
又已知
所又平面A1BC1,又平面AB1C ,
所以平面平面A1BC1 .
(Ⅱ)设BC1交B1C于点E,连结DE,
则DE是平面A1BC1与平面B1CD的交线,
因为A1B//平面B1CD,所以A1B//DE.
又E是BC1的中点,所以D为A1C1的中点.
即A1D:DC1=1.
6.证明:
设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。
则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).
(Ⅰ),
因为,
所以CM⊥SN
(Ⅱ),
设a=(x,y,z)为平面CMN的一个法向量,
则
因为
所以SN与片面CMN所成角为45°。
7.解法一:(1)取CD中点O,连OB,OM,则OB⊥CD,
OM⊥CD.又平面平面,则MO⊥平面,所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E,则∠AEB就是AM与平面BCD所成的角.OB=MO=,MO∥AB,MO//面ABC,M、O到平面ABC的距离相等,作OHBC于H,连MH,则MHBC,求得:
OH=OCsin600=,MH=,利用体积相等得:。
(2)CE是平面与平面的交线.
由(1)知,O是BE的中点,则BCED是菱形.
作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.
,
,
所以,所求二面角的正弦值是.
解法二:取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD,又平面平面,则MO⊥平面.
以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图.
OB=OM=,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),
(1)设是平面MBC的法向量,则,
,由得;由得;取,则距离
(2),.
设平面ACM的法向量为,由得.解得,,取.又平面BCD的法向量为,则
设所求二面角为,则.
8.(1)设底面对角线交点为G,则可以通过证明EG∥FH,得∥平面;(2)利用线线、线面的平行与垂直关系,证明FH⊥平面ABCD,得FH⊥BC,FH⊥AC,进而得EG⊥AC,平面;(3)证明BF⊥平面CDEF,得BF为四面体B-DEF的高,进而求体积.
9.
证明:(I) 设AC与BD交与点G。
因为EF//AG,且EF=1,AG=AC=1.
所以四边形AGEF为平行四边形.
所以AF//平面EG,
因为平面BDE,AF平面BDE,
所以AF//平面BDE.
(II)因为正方形ABCD和四边形ACEF所在的平面
相互垂直,且CEAC,
所以CE平面ABCD.
如图,以C为原点,建立空间直角坐标系C-.
则C(0,0,0),A(,,0),B(0,,0).
所以,,.
所以,
所以,.
所以BDE.
(III) 由(II)知,是平面BDE的一个法向量.
设平面ABE的法向量,则,.
即
所以且
令则.
所以.
从而。
因为二面角为锐角,
所以二面角的大小为.
10.解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK
因为M是棱AA’的中点,点O是BD’的中点
所以AM
所以MOw_w w. k#s5_u.c o*m
由AA’⊥AK,得MO⊥AA’
因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’
所以AK⊥BD’
所以MO⊥BD’
又因为OM是异面直线AA’和BD’都相交w_w w. k#s5_u.c o*m
故OM为异面直线AA'和BD'的公垂线
(2)取BB’中点N,连结MN,则MN⊥平面BCC’B’
过点N作NH⊥BC’于H,连结MH
则由三垂线定理得BC’⊥MH
从而,∠MHN为二面角M-BC’-B’的平面角
MN=1,NH=Bnsin45°=
在Rt△MNH中,tan∠MHN=w_w w. k#s5_u.c o*m
故二面角M-BC’-B’的大小为arctan2
(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内
点O到平面MA’D’距离h=
VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=
解法二:
以点D为坐标原点,建立如图所示空间直角坐标系D-xyz
则A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)
(1)因为点M是棱AA’的中点,点O是BD’的中点
所以M(1,0, ),O(,,)
,=(0,0,1),=(-1,-1,1)
=0, +0=0w_w w. k#s5_u.c o*m
所以OM⊥AA’,OM⊥BD’
又因为OM与异面直线AA’和BD’都相交
故OM为异面直线AA'和BD'的公垂线.
(2)设平面BMC'的一个法向量为=(x,y,z)
=(0,-1,), =(-1,0,1)
即
取z=2,则x=2,y=1,从而=(2,1,2) w_w w. k#s5_u.c o*m
取平面BC'B'的一个法向量为=(0,1,0)
cos
由图可知,二面角M-BC'-B'的平面角为锐角
故二面角M-BC'-B'的大小为arccos
(3)易知,S△OBC=S△BCD'A'=
设平面OBC的一个法向量为=(x1,y1,z1) w_w w. k#s5_u.c o*m
=(-1,-1,1), =(-1,0,0)
即
取z1=1,得y1=1,从而=(0,1,1)
点M到平面OBC的距离d=w_w w. k#s5_u.c o*m
VM-OBC=
展开阅读全文