1、 高二数学归纳材料实小校区 TEL:87530008 高二数学(选修21)知识点归纳资料第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.3、原命题:“若,则” 逆命题: “若,则” 否命题:“若,则” 逆否命题:“若,则”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系5、若,则是的充分条件,是的必要条件若,则是的充要条件(充分必要条件)利用集合间的包含关系: 例如:若
2、,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;6、逻辑联结词:且(and) :命题形式;或(or):命题形式;非(not):命题形式.真真真真假真假假真假假真假真真假假假假真7、全称量词“所有的”、“任意一个”等,用“”表示; 全称命题p:; 全称命题p的否定p:。存在量词“存在一个”、“至少有一个”等,用“”表示; 特称命题p:; 特称命题p的否定p:;第二部分 圆锥曲线1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆即:。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距2、椭圆的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、
3、轴长短轴的长 长轴的长焦点、焦距对称性关于轴、轴、原点对称离心率3、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线即:。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距4、双曲线的几何性质:焦点的位置焦点在轴上焦点在轴上图形标准方程范围或,或,顶点、轴长虚轴的长 实轴的长焦点、焦距对称性关于轴、轴对称,关于原点中心对称离心率渐近线方程5、实轴和虚轴等长的双曲线称为等轴双曲线6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线定点称为抛物线的焦点,定直线称为抛物线的准线7、抛物线的几何性质:标准方程图形顶点对称轴轴轴焦点准线方程离心率范围8、过抛物线的
4、焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即9、焦半径公式:若点在抛物线上,焦点为,则;若点在抛物线上,焦点为,则;第三部分 空间向量1、设,(1) (2)(3)若、为非零向量,则(4)若,则(5)(6)(7),则2、设异面直线,的夹角为,方向向量为,其夹角为,则有3、设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有4、设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小若二面角的平面角为,则5、点与点之间的距离可以转化为两点对应向量的模计算6、在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为7、点是平面外一点,是平面内的一定点,为平面的一个法向量,则点到平面的距离为- 5 -