资源描述
中考数学一次函数复习
本资料为woRD文档,请点击下载地址下载全文下载地址 章节
第三章
课题
课型
复习课
教法
讲练结合
教学目标(知识、能力、教育)
经历一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.
教学重点
一次函数的概念、图像及其性质
教学难点
运用一次函数的图象及其性质解决有关实际问题
教学媒体
学案
教学过程
一:【课前预习】
(一):【知识梳理】
.一次函数的意义及其图象和性质
(1)一次函数:若两个变量x、y间的关系式可以表示成
,是其尾长x的一次函数,当蛇的尾长为6cm时,蛇长为45.5㎝;当蛇的尾长为14cm时,蛇长为105.5㎝;当蛇的尾长为10cm时,蛇长为_________㎝;
5.若正比例函数的图象经过(-l,5)那么这个函数的表达式为__________,y的值随x的减小而____________
二:【经典考题剖析】
.在函数y=-2x+3中当自变量x满足______时,图象在第一象限.
解:0<x<32
点拨:由y=2x+3可知图象过一、二、四象限,与x轴交于,
所以,当0<x<32时,图象在第一象限.
2.已知一次函数y=x-,求字母a、b为何值时:
(1)y随x的增大而增大;(2)图象不经过第一象限;(3)图象经过原点;
(4)图象平行于直线y=-4x+3;(5)图象与y轴交点在x轴下方.
3.杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:(1)买进每份0.2元,卖出每份0.3元;(2)一个月内(以30天计)有20天每天可以卖出200份,其余10天每天只能卖出120份;(3)一个月内,
每天从报社买进的报纸数必须相同,当天卖不掉的报纸,以每份0.1元退给报社.
①填下表:
②设每天从报社买进该种晚报x份时,月利润为y元,试求出y与x之间的函数表达式,并求月利润的最大值.
4.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用后,那么服药后2小时血液中含药量最高,达每毫升6微克,(1微克=10-3毫克),接着逐步衰减,10小时时血液中含量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示。当成人按规定剂量服用后:
(1)分别求出≤2和≥2时与之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时,
在治疗疾病时是有效的,那么这个有效的时间是多长?
解析:(1)设≤2时,,把坐标(2,6)代入得:;
设≥2时,,把坐标(2,6),(10,3)代入得:。
(2)把代入与中得:,,则(小时),因此这个有效时间为6小时。
5.如图,直线
相交于点A,
与x轴的交点坐标为(-1,0),
与y轴的交点坐标为(0,-2),结合图象解答下列问题:
⑴求出直线
表示的一次函数的表达式;
⑵当x为何值时,
表示的两个一次函数的函数值都大于0?
三:【课后训练】
.在下列函数中,满足x是自变量,y是因变量,b是不等于0的常数,且是一次函数的是(
)
2.直线y=2x+6与x轴交点的坐标是(
)
A.(0,-3);B.(0,3);c.(3,0);D.(-92,1)
3.在下列函数中是一次函数且图象过原点的是(
)
4.直线y=43x+4与x轴交于A,与y轴交于B,o为原点,则△AoB的面积为(
)
A.12
B.24
c.6
D.10
5.若函数y=(m—2)x+5-m是一次函数,则m满足的条件是__________.
6.若一次函数y=kx—3经过点,则k=__,该图象还经过点(0,
)和
(
,-2)
7.一次函数y=2x+4的图象如图所示,根据图象可知,
当x_____时,y>0;当y>0时,x=______.
8.观察函数图象l-6-40,并根据所获得的信息回答问题:
⑴折线oAB表示某个实际问题的函数图象,
请你编写一道符合图象意义的应用题;
⑵根据你所给出的应用题,分别指出x轴,y轴所
表示的意义,并写出A由两点的坐标;
⑶求出图象AB的函数表达式,并注明自变量x的取值范围.
9.某加工厂以每吨3000元的价格购进50吨原料进行加工.若进行粗加工,每吨加工费用为600元,需1/3天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需1/2天,每吨售价4500元。现将这50吨原料全部加工完。
⑴设其中粗加工x吨,获利y元,求y与x的函数关系或(不要求写自变量的范围)⑵如果必须在20天内完成,如何安排生产才能获得最大利润?最大利润是多少?
0.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上对应四档的高度,得到如下数据见下表:
⑴小明经过对数据探究,发现桌高y是凳高x的一次函数,请你写出这个一次函数的关系式
⑵小明回家后测量了家里的写字台和凳于,写字台的高度为77厘米,凳子的高度为43.5厘米,请你判断它们是否配套,并说明理由.
四:【课后小结】
布置作业
地纲
教后记
展开阅读全文