资源描述
- - .. --
初中数学竞赛专项训练
1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111 B. 1000 C. 1001 D. 1111
解:依题意设六位数为,则=a×105+b×104+c×103+a×102+b×10+c=a×102(103+1)+b×10(103+1)+c(103+1)=(a×103+b×10+c)(103+1)=1001(a×103+b×10+c),而a×103+b×10+c是整数,所以能被1001整除。故选C
方法二:代入法
2、若,则S的整数部分是____________________
解:因1981、1982……2001均大于1980,所以,又1980、1981……2000均小于2001,所以,从而知S的整数部分为90。
3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n个(n≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。
4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( )
A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元
C. m(1+a%)b%元 D. m(1+a%b%)元
解:根据题意,这批衬衣的零售价为每件m(1+a%)元,因调整后的零售价为原零售价的b%,所以调价后每件衬衣的零售价为m(1+a%)b%元。
应选C
5、如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为 ( )
A. 0 B. 1或-1 C. 2或-2 D. 0或-2
解:由已知,a,b,c为两正一负或两负一正。
①当a,b,c为两正一负时:
;
②当a,b,c为两负一正时:
由①②知所有可能的值为0。
应选A
c
A
B
C
a
b
6、在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为 ( )
A. B.
C. 1 D.
解:过A点作AD⊥CD于D,在Rt△BDA中,则于∠B=60°,所以DB=,AD=。在Rt△ADC中,DC2=AC2-AD2,所以有(a-)2=b2-C2,整理得a2+c2=b2+ac,从而有
应选C
7、设a<b<0,a2+b2=4ab,则的值为 ( )
A. B. C. 2 D. 3
解:因为(a+b)2=6ab,(a-b)2=2ab,由于a<b<0,得,故。
应选A
8.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-ab-bc-ca的值为 ( )
A. 0 B. 1 C. 2 D. 3
9、已知abc≠0,且a+b+c=0,则代数式的值是 ( )
A. 3 B. 2 C. 1 D. 0
10、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d可用p表示为_____
解:设该商品的成本为a,则有a(1+p%)(1-d%)=a,解得
11、已知实数z、y、z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______________
解:由已知条件知(x+1)+y=6,(x+1)·y=z2+9,所以x+1,y是t2-6t+z2+9=0的两个实根,方程有实数解,则△=(-6)2-4(z2+9)=-4z2≥0,从而知z=0,解方程得x+1=3,y=3。所以x+2y+3z=8
12.气象爱好者孔宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。则x等于( )
A. 7 B. 8 C. 9 D. 10
选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于x=a+b+c+d=9。
13、有编号为①、②、③、④的四条赛艇,其速度依次为每小时、、、千米,且满足>>>>0,其中,为河流的水流速度(千米/小时),它们在河流中进行追逐赛规则如下:(1)四条艇在同一起跑线上,同时出发,①、②、③是逆流而上,④号艇顺流而下。(2)经过1小时,①、②、③同时掉头,追赶④号艇,谁先追上④号艇谁为冠军,问冠军为几号?
解:出发1小时后,①、②、③号艇与④号艇的距离分别为
各艇追上④号艇的时间为
对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。
14.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?
解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则
由①②得,代入③得:
∴,故n的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台
15.某宾馆一层客房比二层客房少5间,某旅游团48人,若全安排在第一层,每间4人,房间不够,每间5人,则有房间住不满;若全安排在第二层,每3人,房间不够,每间住4人,则有房间住不满,该宾馆一层有客房多少间?
解:设第一层有客房间,则第二层有间,由题可得
由①得:,即
由②得:,即
∴原不等式组的解集为
∴整数的值为。
答:一层有客房10间。
16、某生产小组开展劳动竞赛后,每人一天多做10个零件,这样8个人一天做的零件超过200个,后来改进技术,每人一天又多做27个零件,这样他们4个人一天所做零件就超过劳动竞赛中8个人做的零件,问他们改进技术后的生产效率是劳动竞赛前的几倍?
解:设劳动竞赛前每人一天做个零件
由题意
解得
∵是整数 ∴=16
(16+37)÷16≈3.3
故改进技术后的生产效率是劳动竞赛前的3.3倍。
初中数学竞赛专项训练(5)
(方程应用)
一、选择题:
1、甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后35分钟到达B,甲乙的速度之比为 ( )
A. 3∶5 B. 4∶3 C. 4∶5 D. 3∶4
2、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件,如果获利润最大的产品是第R档次(最低档次为第一档次,档次依次随质量增加),那么R等于 ( )
A. 5 B. 7 C. 9 D. 10
3、某商店出售某种商品每件可获利m元,利润为20%(利润=),若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为 ( )
A. 25% B. 20% C. 16% D. 12.5%
4、某项工程,甲单独需a天完成,在甲做了c(c<a)天后,剩下工作由乙单独完成还需b天,若开始就由甲乙两人共同合作,则完成任务需( )天
A. B. C. D.
5、A、B、C三个足球队举行循环比赛,下表给出部分比赛结果:
球队
比赛场次
胜
负
平
进球数
失球数
A
2
2场
1
B
2
1场
2
4
C
2
3
7
则:A、B两队比赛时,A队与B队进球数之比为 ( )
A. 2∶0 B. 3∶1 C. 2∶1 D. 0∶2
6、甲乙两辆汽车进行千米比赛,当甲车到达终点时,乙车距终点还有a千米(0<a<50)现将甲车起跑处从原点后移a千米,重新开始比赛,那么比赛的结果是 ( )
A. 甲先到达终点 B. 乙先到达终点
C. 甲乙同时到达终点 D. 确定谁先到与a值无关
7、一只小船顺流航行在甲、乙两个码头之间需a小时,逆流航行这段路程需b小时,那么一木块顺水漂流这段路需( )小时
A. B. C. D.
8、A的年龄比B与C的年龄和大16,A的年龄的平方比B与C的年龄和的平方大1632,那么A、B、C的年龄之和是 ( )
A. 210 B. 201 C. 102 D. 120
二、填空题
1、甲乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有济南市场同类产品的,然而实际情况并不理想,甲厂仅有的产品,乙厂仅有的产品销到了济南,两厂的产品仅占了济南市场同类产品的,则甲厂该产品的年产量与乙厂该产品的年产量的比为_______
2、假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择,甲种客车每辆有40个座位,租金400元;乙种客车每辆有50个座位,租金480元,则租用该公司客车最少需用租金_____元。
3、时钟在四点与五点之间,在_______时刻(时针与分针)在同一条直线上?
4、为民房产公司把一套房子以标价的九五折出售给钱先生,钱先生在三年后再以超出房子原来标价60%的价格把房子转让给金先生,考虑到三年来物价的总涨幅为40%,则钱先生实际上按_____%的利率获得了利润(精确到一位小数)
5、甲乙两名运动员在长100米的游泳池两边同时开始相向游泳,甲游100米要72秒,乙游100米要60秒,略去转身时间不计,在12分钟内二人相遇____次。
6、已知甲、乙、丙三人的年龄都是正整数,甲的年龄是乙的两倍,乙比丙小7岁,三人的年龄之和是小于70的质数,且质数的各位数字之和为13,则甲、乙、丙三人的年龄分别是_________
三、解答题
1、某项工程,如果由甲乙两队承包,天完成,需付180000元;由乙、丙两队承包,天完成,需付150000元;由甲、丙两队承包,天完成,需付160000元,现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?
2、甲、乙两汽车零售商(以下分别简称甲、乙)向某品牌汽车生产厂订购一批汽车,甲开始定购的汽车数量是乙所订购数量的3倍,后来由于某种原因,甲从其所订的汽车中转让给乙6辆,在提车时,生产厂所提供的汽车比甲、乙所订购的总数少了6辆,最后甲所购汽车的数量是乙所购的2倍,试问甲、乙最后所购得的汽车总数最多是多少量?最少是多少辆?
3、8个人乘速度相同的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距离火车站15km的地方出现故障,此时距停止检票的时间还有42分钟。这时惟一可利用的交通工具是另一辆小汽车,已知包括司机在内这辆车限乘5人,且这辆车的平均速度是60km/h,人步行的平均速度是5km/h。试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站。
4、某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师生立即出发到县城,由于汽车在赴校途中发生了故障,不得不停车修理,学校师生等到7时10分仍未见汽车来接,就步行走向县城,在行进途中遇到了已修理好的汽车,立即上车赶赴县城,结果比原来到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,问汽车在途中排除故障花了多少时间?
数学竞赛专项训练(5)方程应用参考答案
一、选择题
1、D。 解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:
,化简得,解得不合题意舍去)。应选D。
2、C。 解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为
所以,生产第9档次产品获利润最大,每天获利864元。
3、C。 解:若这商品原来进价为每件a元,提价后的利润率为,
则解这个方程组,得,即提价后的利润率为16%。
4、B。解:设甲乙合作用天完成。
由题意:,解得。故选B。
5、A。解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。就选A。
6、A。解:设从起点到终点S千米,甲走(s+a)千米时,乙走x千米
7、B。解:设小船自身在静水中的速度为v千米/时,水流速度为x千米/时,甲乙之间的距离为S千米,于是有求得所以。
8、C。解:设A、B、C各人的年龄为A、B、C,则A=B+C+16 ①
A2=(B+C)2+1632 ② 由②可得(A+B+C)(A-B-C)=1632 ③,由①得A-B-C=16 ④,①代入③可求得A+B+C=102
二、填空题
1、2∶1。解甲厂该产品的年产量为,乙厂该产品的年产量为。
则:,解得
2、3520。解:因为9辆甲种客车可以乘坐360人,故最多需要9辆客车;又因为7辆乙种客车只能乘坐350人,故最多需要8辆客车。
①当用9辆客车时,显然用9辆甲种客车需用租金最少,为400×9=3600元;
②当用8辆客车时,因为7辆甲种客车,1辆乙种客车只能乘坐40×7+50=330人,而6辆甲种客车,2辆乙种客车只能乘坐40×6+50×2=340人,5辆甲种客车,3辆乙种客车只能乘坐40×5+50×3=350人,4辆甲种客车,4辆乙种客车只能乘坐40×4+50×4=360人,所以用8辆客车时最少要用4辆乙种客车,显然用4辆甲种客车,4辆乙种客车时需用租金最少为400×4+480×4=3520元。
3、4点分或4点分时,两针在同一直线上。
解:设四点过分后,两针在同一直线上,
若两针重合,则,求得分,
若两针成180度角,则,求得分。
所以在4点分或4点分时,两针在同一直线上。
4、20.3。解:钱先生购房开支为标价的95%,考虑到物价上涨因素,钱先生转让房子的利率为
5、共11次。
60
100米
180
300
420
540
660
720
6、30岁、15岁、22岁。
解:设甲、乙、丙的年龄分别为岁、岁、岁,则
显然是两位数,而13=4+9=5+8=6+7
∴只能等于67 ④。由①②④三式构成的方程组,得,,。
三、解答题
1、设甲、乙、丙单独承包各需、、天完成,
则解得
再设甲、乙、丙单独工作一天,各需、、元,
则,解得
于是,甲队单独承包费用是45500×4=182000(元),由乙队单独承包费用是29500×6=177000(元),而丙不能在一周内完成,所以,乙队承包费最少。
2、解:设甲、乙最后所购得的汽车总数为辆,在生产厂最后少供的6辆车中,甲少要了辆(),乙少要了()辆,则有
,整理后得。
当时,最大,为90;当时,最小为18。
所以甲、乙购得的汽车总数至多为90辆,至少为18辆。
3、解:[方案一]:当小汽车出现故障时,乘这辆车的4个人下车步行,另一辆车将车内的4个人送到火车站,立即返回接步行的4个人到火车站。
设乘出现故障汽车的4个人步行的距离为,根据题意,有
解得,因此这8个人全部到火车站所需时间为
故此方案可行。
[方案二]:当小汽车出现故障时,乘这辆车的4个人下车步行,另一辆车将车内的4个人送到某地方后,让他们下车步行,再立即返回接出故障汽车而步行的另外4个人,使得两批人员最后同时到达车站。
分析此方案可知,两批人员步行的距离相同,如图所示,D为无故障汽车人员下车地点,C为有故障汽车人员上车地点。因此,设AC=BD=y,有
解得。因此这8个人同时到火车站所需时间为
,故此方案可行。
火车站
A
C
D
B
·
·
·
·
故障点
4、解:假定排除故障花时分钟,如图设点A为县城所在地,点C为学校所在地,点B为师生途中与汽车相遇之处。在师生们晚到县城的30分钟中,有10分钟是因晚出发造成的,还有20分钟是由于从C到B步行代替乘车而耽误的,汽车所晚的30分钟,一方面是由于排除故障耽误了分钟,但另一方面由于少跑了B到C之间的一个来回而省下了一些时间,已知汽车速度是步行速度的6倍,而步行比汽车从C到B这段距离要多花20分钟,由此汽车由C到B应花(分钟),一个来回省下8分钟,所以有-8=30 =38 即汽车在途中排除故障花了38分钟。
A
B
C
·
·
·
初中数学竞赛专项训练(7)
(逻辑推理)
一、选择题:
1、世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队得0分,平局时两队各得1分,小组赛完以后,总积分最高的两个队出线进入下轮比赛,如果总积分相同,还要按净胜球排序,一个队要保证出线,这个队至少要积 ( )
A. 6分 B. 7分 C. 8分 D. 9分
2、甲、乙、丙三人比赛象棋,每局比赛后,若是和棋,则这两个人继续比赛,直到分出胜负,负者退下,由另一个与胜者比赛,比赛若干局后,甲胜4局,负2局;乙胜3局,负3局,如果丙负3局,那么丙胜 ( )
A. 0局 B. 1局 C. 2局 D. 3局
3、已知四边形ABCD从下列条件中①AB∥CD ②BC∥AD ③AB=CD ④BC=AD ⑤∠A=∠C ⑥∠B=∠D,任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有 ( )
A. 4种 B. 9种 C. 13种 D. 15种
4、某校初三两个毕业班的学生和教师共100人,一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空档处,那么满足上述要求的排法的方案有 ( )
A. 1种 B. 2种 C. 4种 D. 0种
5、正整数n小于100,并且满足等式,其中表示不超过x的最大整数,这样的正整数n有( )个
A. 2 B. 3 C. 12 D. 16
6、周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是 ( )
A. 15 B. 14 C. 13 D. 12
7、如图某三角形展览馆由25个正三角形展室组成,每两个相邻展室(指有公共边的小三角形)都有门相通,若某参观者不愿返回已参观过的展室(通过每个房间至少一次),那么他至多能参观( )个展室。
A. 23 B. 22 C. 21 D. 20
8、一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,最小要抽( )张才能保证有4张牌是同一花色的。
A. 12 B. 13 C. 14 D. 15
二、填空题:
1、观察下列图形:
①
②
③
④
根据①②③的规律,图④中三角形个数______
2、有两副扑克牌,每副牌的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花花色的牌又按A,1,2,3,……J,Q,K的顺序排列,某人把按上述排列的两副扑克牌上下叠放在一起,然后从上到下把第一张丢掉,把第二张放在最底层,再把第三张丢掉,把第四张放在最底层,……如此下去,直到最后只剩下一张牌,则所剩的这张牌是______
3、用0、1、2、3、4、5、6、7、8、9十个数字一共可组成_____个能被5整除的三位数
4、将7个小球分别放入3个盒子里,允许有的盒子空着不放,试问有____种不同放法。
5、有1997个负号“-”排成一行,甲乙轮流改“-”为正号“+”,每次只准画一个或相邻的两个“-”为“+”,先画完“-”使对方无法再画为胜,现规定甲先画,则其必胜的策略是__________________
6、有100个人,其中至少有1人说假话,又知这100人里任意2人总有个说真话,则说真话的有_____人。
三、解答题
1、今有长度分别为1、2、3、……、9的线段各一条,可用多少种不同的方法从中选用若干条组成正方形?
2、某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,证明至少有5人植树的株数相同。
3、袋中装有2002个弹子,张伟和王华轮流每次可取1,2或3个,规定谁能最后取完弹子谁就获胜,现由王华先取,问哪个获胜?他该怎样玩这场游戏?
4、有17个科学家,他们中的每一个都和其他的科学家通信,在他们的通信中仅仅讨论三个问题,每一对科学家互相通信时,仅仅讨论同一个问题。证明至少有三个科学家关于同一个题目互相通信
数学竞赛专项训练(7)逻辑推理参考答案
一、选择题
1、答B。解:4个队单循环比赛共比赛6场,每场比赛后两队得分之和或为2分(即打平),或为3分(有胜负),所以6场后各队的得分之和不超过18分,若一个队得7分,剩下的3个队得分之和不超过11分,不可能有两个队得分之和大于或等于7分,所以这个队必定出线,如果一个队得6分,则有可能还有两个队均得6分,而净胜球比该队多,该队仍不能出线。应选B。
2、答B。解有人胜一局,便有人负一局,已知总负局数为2+3+3=8,而甲、乙胜局数为4+3=7,故丙胜局数为8-7=1,应选B。
3、答B。解:共有15种搭配。①和② ③和④ ⑤和⑥ ①和③ ②和④ ①和⑤ ①和⑥ ②和⑤ ②和⑥ 能得出四边形ABCD是平行四边形。
①和④ ②和③ ③和⑤ ③和⑥ ④和⑤ ④和⑥ 不能得出四边形ABCD是平行四边形。应选B。
4、答B。解:设最后一排k个人,共n排,各排人数为k,k+1,k+2……k+(n-1)。由题意,即,因k、n都是正整数,且n≥3,所以,且n与的奇偶性相同,将200分解质因数可知n=5或n=8,当n=5时,k=18,当n=8时,k=9,共有两种方案。应选B。
5、答D。解:由,以及若x不是整数,则[x]<x知,2|n,3|n,6|n,即n是6的倍数,因此小于100的这样的正整数有个。应选D。
6、答C。解设参加跳舞的老师有x人,则第一个是方老师和(6+1)个学生跳过舞;第二是张老师和(6+2)个学生跳过舞;第三个是王老师和(6+3)个学生跳过舞……第x个是何老师和(6+x)个学生跳过舞,所以有x+(6+x)=20,∴x=7,20-7=13。故选C。
7、答C。解:如图对展室作黑白相间染色,得10个白室,15个黑室,按要求不返回参观过的展室,因此,参观时必定是从黑室到白室或从白室到黑室(不会出现从黑到黑,或从白到白),由于白室只有10个,为使参观的展室最多,只能从黑室开始,顺次经过所有的白室,最终到达黑室,所以,至多能参观到21个展室。选C。
8、选B。解:4种花色相当于4个抽屉,设最少要抽x张扑克,问题相当于把x张扑克放进4个抽屉,至少有4张牌在同一个抽屉,有x=3×4+1=13。故选B。
二、填空题
1、解:根据图中①、②、③的规律,可知图④中的三角形的个数为1+4+3×4+32×4+33×4=1+4+12+36+108=161(个)
2、解:根据题意,如果扑克牌的张数为2、22、23、……2n,那么依照上述操作方法,剩下的一张牌就是这些牌的最后一张,例如:手中只有64张牌,依照上述操作方法,最后只剩下第64张牌,现在手中有108张牌,多出108-64=44(张),如果依照上述操作方法,先丢掉44张牌,那么此时手中恰有64张牌,而原来顺序的第88张牌恰好放在手中牌的最底层,这样,再继续进行丢、留的操作,最后剩下的就是原顺序的第88张牌,按照两副扑克牌的花色排列顺序88-54-2-26=6,所剩的最后一张牌是第二副牌中的方块6。
3、解:百位上的数共有9个,十位上的数共有10个,个位上的数共有2个,因此所有的三位数共9×10×2=180。
4、解:设放在三个盒子里的球数分别为、、,球无区别,盒子无区别,故可令,依题意有,于是,,故x只有取3、4、5、6、7共五个值。
①时,,则只取3、2,相应取1、2,故有2种放法;
②=4时,3,则只取3、2,相应取0、1,故有2种放法;
③=5时,2,则只取2、1,相应取1、0,故有2种放法;
④=6时,1,则只取1,相应取0,故有1种放法;
⑤=7时,0,则只取0,相应取0,故有1种放法;
综上所求,故有8种不同放法。
5、解:先把第999个(中间)“-”改为“+”,然后,对乙的每次改动,甲做与之中心对称的改动,视数字为点,对应在数轴上,这1997个点正好关于点(999)对称。
6、解:由题意说假话的至少有1人,但不多于1人,所以说假话的1人,说真话的99人。
三、1、解:1+2+3+……9=45,故正方形的边长最多为11,而组成的正方形的边长至少有两条线段的和,故边长最小为7。
7=1+6=2+5=3+4
8=1+7=2+6=3+5
9+1=8+2=7+3=6+4
9+2=8+3=7+4=6+5
9=1+8=2+7=3+6=4+5
故边长为7、8、10、11的正方形各一个,共4个。而边长为9的边可有5种可能能组成5种不同的正方形。所以有9种不同的方法组成正方形。
2、证明:利用抽屉原理,按植树的多少,从50至100株可以构造51年抽屉,则问题转化为至少有5人植树的株数在同一个抽屉里。(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有4人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,每个抽屉最多有4人,故植树的总株数最多有:
4(50+51+52+……+100)=4×=15300<15301,得出矛盾。因此,至少有5人植树的株数相同。
3、解:王华获胜。
王华先取2个弹子,将2000(是4的倍数)个弹子留给张伟取,不记张伟取多少个弹子,设为x个,王华总跟着取(4-x)个,这样总保证将4的倍数个弹子留给张伟取,如此下去,最后一次是将4个弹子留给张伟取,张伟取后,王华一次取完余下的弹子。
4、解析在研究与某些元素间关系相关的存在问题时,常常利用染色造抽屉解题。17位科学家看作17个点,每两位科学家互相通信看作是两点的连线段,关于三个问题通信可看作是用三种颜色染成的线段,如用红色表示关于问题甲的通信,蓝色表示问题乙通信,黄色表示问题丙通信。这样等价于:有17个点,任三点不共线,每两点连成一条线段,把每条线段染成红色、蓝色和黄色,且每条线段只染一种颜色,证明一定存在一个三角形三边同色的三角形。
证明:从17个点中的一点,比如点A处作引16条线段,共三种颜色,由抽屉原理至少有6条线段同色,设为AB、AC、AD、AE、AF、AG且均为红色。
若B、C、D、E、F、G这六个点中有两点连线为红线,设这两点为B、C,则△ABC是一个三边同为红色的三角形。
若B、C、D、E、F、G这六点中任两点的连线不是红色,则考虑5条线段BC、BD、BE、BF、BG的颜色只能是两种,必有3条线段同色,设为BC、BD、BE均为黄色,再研究△CDE的三边的颜色,要么同为蓝色,则△CDE是一个三边同色的三角形,要么至少有一边为黄色,设这边为CD,则△CDE是一个三边同为黄色的三角形。
初中数学竞赛专项训练(8)
(命题及三角形边角不等关系)
一、选择题:
1、如图8-1,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作两个等边三角形APC和BPD,则线段CD的长度的最小值是 ( )
A. 4 B. 5 C. 6 D.
2、如图8-2,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7, 则BC+CD等于 ( )
A. B. 5 C. 4 D. 3
3、如图8-3,在梯形ABCD中,AD∥BC,AD=3,BC=9,AB=6,CD=4,若EF∥BC,且梯形AEFD与梯形EBCF的周长相等,则EF的长为 ( )
60°
A
B
C
D
A
B
C
D
P
图8-1
图8-2
A
D
C
B
E
F
图8-3
A. B. C. D.
4、已知△ABC的三个内角为A、B、C且α=A+B,β=C+A,γ=C+B,则α、β、γ中,锐角的个数最多为 ( )
A. 1 B. 2 C. 3 D. 0
图8-4
A
B
C
D
A
D
C
F
C’
B
E
5、如图8-4,矩形ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为 ( )
A. 4cm B. 5cm
C. 4cm D. 5cm
6、一个三角形的三边长分别为a,a,b,另一个三角形的三边长分别为a,b,b,其中a>b,若两个三角形的最小内角相等,则的值等于 ( )
A. B. C. D.
7、在凸10边形的所有内角中,锐角的个数最多是 ( )
A. 0 B. 1 C. 3 D. 5
8、若函数与函数的图象相交于A,C两点,AB垂直x轴于B,则△ABC的面积为 ( )
A. 1 B. 2 C. k D. k2
二、填空题
·
A
B
B′
D
C
图8-5
E
A′
1、若四边形的一组对边中点的连线的长为d,另一组对边的长分别为a,b,则d与的大小关系是_______
2、如图8-5,AA′、BB′分别是∠EAB、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为___
图8-6
A
B
D
C
P
3、已知五条线段长度分别是3、5、7、9、11,将其中不同的三个数组成三数组,比如(3、5、7)、(5、9、11)……问有多少组中的三个数恰好构成一个三角形的三条边的长_____
4、如图8-6,P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=_______
图8-8
B
A
C
P
16
米
20米
A
B
C
D
甲
乙
图8-7
5、如图8-7,甲楼楼高16米,乙楼座落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时求①如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?______②如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是______米。
6、如图8-8,在△ABC中,∠ABC=60°,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=__
A
B
D
C
图8-9
三、解答题
1、如图8-9,AD是△ABC中BC边上的中线, 求证:AD<(AB+AC)
2、已知一个三角形的周长为P,问这个三角形的最大边长度在哪个范围内变化?
A
C
F
B
D
E
图8-10
3、如图8-10,在Rt△ABC中,∠ACB=90°,CD是角平分线,DE∥BC交AC于点E,DF∥AC交BC于点F。
求证:①四边形CEDF是正方形。
②CD2=2AE·BF
4、从1、2、3、4……、2004中任选k个数,使所选的k个数中一定可以找到能构成三角形边长的三个数(这里要求三角形三边长互不相等),试问满足条件的k的最小值是多少?
数学竞赛专项训练(8)参考答案
A
B
C
D
P
E
F
G
一、选择题
1、如图过C作CE⊥AD于E,过D作DF⊥PB于F,过D作DG⊥CE于G。
显然DG=EF=AB=5,CD≥DG,当P为AB中点时,有CD=DG=5,所以CD长度的最小值是5。
A
D
C
B
E
F
H
G
60°
A
B
C
D
E
2、如图延长AB、DC相交于E,在Rt△ADE中,可求得AE=16,DE=8,于是BE=AE-AB=9,在Rt△BEC中,可求得BC=3,CE=6,于是CD=DE-CE=2 BC+CD=5。
3、由已知AD+AE+EF+FD=EF+EB+BC+CF
∴AD+AE+FD=EB+BC+CF=
∵EF∥BC,∴EF∥AD,
设,
AD+AE+FD=3+ ∴ 解得k=4
作AH∥CD,AH交BC于H,交EF于G,
则GF=HC=AD=3,BH=BC-CH=9-3=6
∵,∴ ∴
4、假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,也就是A+B<90°,B+C<90°,C+A<90°。∵2(A+B+C)<270°,A+B+C<135°与A+B+C=180°矛盾。故α、β、γ不可能都是锐角,假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A+B<90°,C+A<90°,∴A+(A+B+C)<180°,即A+180°<180°,A<0°这也不可能,所以α、β、γ中至多只有一个锐角,如A=20°,B=30°,C=130°,α=50°,选A。
5、折叠后,DE=BE,设DE=x,则AE=9-x,在Rt△ABC中,AB2+AE2=BE2,即,解得x=5,连结BD交EF于O,则EO=FO,BO=DO
∵ ∴DO=
在Rt△DOE中,EO= ∴EF=。选B。
Q
A
B
C
D
6、设△ABC中,AB=AC=a,BC=b,如图D是AB上一点,有AD=b,因a>b,故∠A是△ABC的最小角,设∠A=Q,则以b,b,a为三边之三角形的最小角亦为Q,从而它与△ABC全等,所以DC=b,∠ACD=Q,因有公共底角∠B,所以有等腰△ADC∽等腰△CBD,从而得,即,令,即得方程,解得。选B。
7、C。由于任意凸多边形的所有外角之和都是360°,故外角中钝角的个数不能超过3个,又因为内角与外角互补,因此,内角中锐角最多不能超过3个,实际上,容易构造出内角中有三个锐角的凸10边形。
8、A。设点A的坐标为(),则,故△ABO的面积为,又因为△ABO与△CBO同底等高,因此△ABC的面积=2×△ABO的面积=1。
A
B
D
C
P
M
N
二、填空题
1、如图设四边形ABCD的一组对边AB和CD的中点分别为M、N,MN=d,另一组对边是AD和BC,其长度分别为a、b,连结BD,设P是BD的中点,连结MP、PN,则MP=,NP=,显然恒有,当AD∥BC,由平行线等分线段定理知M、N、P三点共线,此时有,所以与的大小关系是。
2、12°。设∠BAC的度数为x,∵AB=BB′ ∴∠B′BD=2x,∠CBD=4x
∵AB=AA′ ∴∠AA′B=∠AB A′=∠CBD=4x ∵∠A′AB
展开阅读全文