收藏 分销(赏)

基于Proe的气压瓶盖注射模具的设计毕业说明书.doc

上传人:精**** 文档编号:4659572 上传时间:2024-10-08 格式:DOC 页数:58 大小:1.51MB 下载积分:16 金币
下载 相关 举报
基于Proe的气压瓶盖注射模具的设计毕业说明书.doc_第1页
第1页 / 共58页
基于Proe的气压瓶盖注射模具的设计毕业说明书.doc_第2页
第2页 / 共58页


点击查看更多>>
资源描述
基于Proe的气压瓶盖注射模具的设计毕业说明书 53 资料内容仅供参考,如有不当或者侵权,请联系本人改正或者删除。 目 录 1前言 1 1.1模具行业发展的现状 1 1.2中国模具发展的现状 1 1.3参数化技术慨述 2 1.4 选题目的以及意义 3 2 塑件成型工艺性分析 4 2.1气压瓶盖三维模型及二维图 4 2.2结构特征分析及成型工艺性分析 5 2.2.1结构特征分析 5 2.2.2成型工艺性分析 5 2.2.3 塑件材料的基本性能 5 3塑件成形工艺与设备 6 3.1注塑成型工艺条件 6 3.1.1 温度 6 3.1.2 压力 6 3.1.3 时间 6 3.2 型腔数量以及注射机有关工艺参数的校核 7 3.2.1型腔数量校核 7 3.2.2最大注射量校核 8 3.2.3 锁模力的校核 8 3.2.4 注射压力校核 8 3.2.5 开模行程校核 9 4注射模具结构设计 9 4.1型腔的确定 9 4.2制品成型位置及分型面的选择 10 4.3 浇注系统设计 11 4.3.1 浇口的位置、 数量的确定 12 4.3.2 排气系统设计 14 4.4 成型零部件设计 15 4.4.1凹模结构设计 15 4.4.2 型芯结构设计 15 4.5模架的选用 16 4.6导向与定位机构 16 4.7脱模机构的设计 17 4.8侧向分型与抽芯机构设计 17 4.9冷却系统设计 18 4.9.1冷却系统的设计原则 18 4.10模具成型零部件材料的选择 19 4.11装配总图 20 4.12模具的装配过程 22 4.13 模具运动分析过程 22 4.14试模 23 5 参数化设计 24 5.1设计的流程 24 5.2应用Pro/e系统进行模具设计的流程 24 5.2.1制品的造型 24 5.2.2主要的分型面 24 5.2.3浇注系统的设计 25 5.2.4成型零件生成 26 5.2.5调用标准模架 28 5.2.6爆炸图 29 6 仿真加工 30 总结 33 参考文献: 34 致谢 35 1前言 1.1模具行业发展的现状 模具行业是制造业中的一项基础产业, 是技术成果转化的基础, 同时本身又是高新技术产业的重要领域。模具技术水平的高低, 决定着产品的质量、 效益和新产品开发能力, 它已成为衡量一个国家制造业水平高低的重要标志。当前, 塑料模具在整个模具行业中约占30%左右。二十一世纪世界制造加工业的竞争更加激烈, 对注塑产品与模具的设计制造提出了新的挑战, 产品需求的多样性要求塑件设计的多品种、 复杂化, 市场的快速变化要求发展产品及模具的快速设计制造技术, 全球性的经济竞争要求尽可能地降低产品成本、 提高产品质量, 创新、 精密、 复杂、 高附加值已成为注塑产品的发展方向, 必须寻求高效、 可靠、 敏捷、 柔性的注塑产品与模具设计制造系统。 当前, 国内塑料模具市场以注塑模具需求量最大, 其中发展重点为工程塑料模具。有关数据表明,当前仅汽车行业就需要各种塑料制品36万吨; 电冰箱、 洗衣机和空调的年产量均超过1000万台; 彩电的年产量已超过3000万台; 到 ,在建材行业,塑料门窗的普及率为30%,塑料管的普及率将达到50%。这些都会导致对模具的需求量大幅度增长。近来中国模具工业发展迅速, 当前已呈现出市场广阔、 产销两旺的局面。深圳周边及珠江三角洲地区是中国塑料模具工业最为发达、 科技含量最高的区域, 预计有可能在 内发展成为世界模具生产中心。其次, 浙江东部的余姚、 宁海、 黄岩温州等地区的塑料模具工业发展也非常快。 相当多的发达国家塑料模具企业移师中国, 是国内塑料模具工业迅速发展的重要原因之一。中国技术人才水平的提高和平均劳动力成本低都是吸引外资的优势, 这些是塑料模具市场迅速成长的重要因素所在, 因此中国塑模市场的前景一片辉煌。 1.2中国模具发展的现状 虽然近几年来, 中国塑料模具无论是在数量上, 还是在质量、 技术和能力等方面都有了很大发展, 但总体上与工业发达的国家相比仍有较大的差距。例如, 在总量供不应求的同时, 一些低档塑料模具已供过于求, 市场竞争激烈; 一些技术含量不太高的中档塑料模具也有一些趋向于供过于求, 然而精密加工设备还很少, 一些大型、 精密、 复杂、 长寿命的中高档塑料模具每年仍大量进口。许多先进的技术如CAD/CAE/CAM技术的普及率还不高, 中国塑料模具行业与其发展需要和国外先进水平相比, 还存在很多方面的问题。现在国外发达国家模具标准化程度为70%~80%, 而中国只有30%左右。如能广泛应用模具标准件, 将会缩短模具设计制造周期25%~40%, 并可减少由于使用者自制模具件而造成的工时浪费。现在应用模具CAD/CAM技术设计模具已较为普遍, 随着通用机械CAD/CAM技术的发展, 塑料注射模CAD/CAM已经不断的深化。从上世纪60年代基于线框模型的CAD系统开始, 到70年代以曲面造型为核心的CAD/CAM系统, 80年代实体造型技术的成功应用, 90年代基于特徵的参数化实体/曲面造型技术的完善, 为塑料注射模采用CAD/CAE/CAM技术提供了可靠的保证。当前在国内外巿场已涌现出一批成功应用于塑料注射模的CAD/CAE/CAM系统。而且经过推广使用模具标准件, 实现了部分资源共享, 这样就大大减少模具设计的工作量和工作时间, 对于发展CAD/CAM技术、 提高模具的精密度有重要意义。因此, 模具成为国家重点鼓励与支持发展的技术和产品。现代模具是多学科知识集聚的高新技术产业的一部分, 是国民经济的装备产业, 其技术、 资金与劳动相对密集。 1.3参数化技术慨述 参数化技术是当前CAD技术重要的研究领域之一, 经过改动图形某一部分或某几部分的尺寸, 自动完成对图形中相关部分的改动, 从而实现尺寸对图形的驱动。在设计过程中, 系统自动地捕获用户的设计意图, 并把各个设计对象以及对象之间的关系记录下来, 当用户修改图纸中的设计参数时, 系统能够自动地更新图纸, 使图纸中反映用户设计意图的设计对象之间的关系依旧能够维持。参数化设计技术以其强有力的草图设计、 尺寸驱动修改图形功能, 极大地改进了图形的修改手段, 提高了设计的柔性, 在慨念设计、 初始设计、 产品建模及修改系列设计、 多方案比较、 动态设计、 实体造型、 装配、 公差分析与综合、 机构仿真、 优化设计等领域发挥着越来越大的作用, 并体现出很高的应用价值, 能否实现参数化当前已成为评价CAD系统优劣的重要技术指标。 Pro/ENGINEER 集合了零件设计、 产品组合、 模具开发、 NC加工、 钣金件设计、 铸造件设计、 自动量测、 机构仿真、 应力分析等功能于一体。是塑料模具实现参数化的一个必备的软件。EMX( Expert Moldbase Extension) 是PRO/E系统中的一个外挂模块, 专门用来建立各种标准模架及模具标准件和滑块、 斜销等附件, 能够建立冷却水管, 能够自动产生模具工程图和明细表, 还能够模拟模具开模过程进行动态仿真和干涉检查, 并可将仿真结果输出成视频文件, 是个功能非常强大且使用非常方便的模具设计工具。 本设计结构和模架设计是利用模架设计专家系统设计的。型腔和型芯设计能够在EMX里设计, 也能够事先在PRO/E的制造模块里完成。本设计有一部分是在EMX里完成。在模架调入之后能够根据需要添加、 删除各种模具零件。也能够修改现成的标准件使之满足自身设计。完全的参数化设计, 使用非常方便。 Pro/ENGINEER参数化设计的特性: (1).3D实体模型除了能够将用户的设计思想以最真实的模型在计算机上表现出来之外, 借助于系统参数, 还能够随时计算出产品的体积、 面积、 重心、 重量、 惯性大小等, 可极大的减少设计人员的计算时间。 (2).Pro/ENGINEER可随时由3D实体模型产生2D工程图, 且可自动标示工程图尺寸。不论在3D还是2D图形上作尺寸修正。其相关的2D图形或3D实体模型均自动修改, 同时组合、 制造等相关设计也会自动修改, 如此可确保数据的正确性, 并避免重复修正的耗时性。 (3).以特征作为设计的单位。可随时对特征做合理、 不违反几何顺序调整、 插入、 删除、 重新定义等修正动作。 1.4 选题目的以及意义 毕业设计将总结专业基础和专业技术的学习成果,锻炼和开发学生的综合运用能力。本课题要求跟据图纸以及任务书设计出结构优化的模具。该塑件为高压瓶盖, 它是配在高压瓶上用的一种盖子, 由于是配用, 批量不是很大, 为中批量生产。其结构有点复杂, 有三个侧抽芯, 因而该塑件的模具有一个典型结构——侧抽芯滑块机构。这个课题能充分体现专业知识, 对模具设计能力有一定的锻炼。 经过对高压瓶盖的注射模具的设计, 能够巩固专业知识为以后从事本专业实际工作和研究工作奠定了重要的思想基础, 也同时具有一定的初步开发模具能力。另外加深了对机械基础知识的应用。提高了整体的设计能力。 2 塑件成型工艺性分析 2.1气压瓶盖三维模型及二维图 如图2-1,2-2所示, 制品的侧面有深孔和小孔, 中间内腔有2处凸筋。 图2-1 气压瓶盖三维模型 图2-2 气压瓶盖二维图 2.2结构特征分析及成型工艺性分析 2.2.1结构特征分析 该塑件为气压瓶盖, 其二维图尺寸如图2-2所示, 塑件的壁厚为2.5mm,为中批量生产, 材料为ABS, 成型工艺性好, 能够注射成型。 2.2.2成型工艺性分析 根据塑件的用途以及塑料的性质分析其表面质量, 确定塑件的精度等级要求为: IT4; 其中塑件的表观缺陷是其特有的质量指标, 包括缺料, 溢料与飞边, 凹陷与缩瘪, 气孔, 翘曲等。模具的腔壁表面粗糙度是塑件表面粗糙度的决定性因素, 一般要比塑件高出一个等级。 为了便于塑件从模腔中脱出或从塑件中抽出型芯, 塑件设计时须考虑其内外壁面应该有足够的脱模斜度。最小脱模斜度与塑料性能、 塑件几何形状有关。该塑件壁厚约为2.5mm, 大开口处有5º的斜角, 小开口处有3º的倾角, 这样足以使型芯很容易抽出。为了容易使大的侧抽芯容易抽出能够查参考文献中的表2-19 , 脱模斜度( 型芯) : 1º。 2.2.3 塑件材料的基本性能 本塑料制件采用ABS成型, 密度为1.02至1.16 g/cm3。全称为苯乙烯——丁二烯——丙烯腈共聚物, 它是一种三元共聚物, 拥有三种组元的共同性能, 使其具有”坚韧, 质硬, 刚性”的特点。ABS树脂具有较高的的冲击韧性和力学强度, 尺寸稳定, 耐化学性及电性能良好。而且有易成型和机加工的特点。另外, 表面还能够镀铬, 成为塑料涂金属的一种常见材料。它是一种无定形材料, 吸湿性强, 其吸水率( 24h) :0.2%~0.3%; 含水量应小于0.3%, 必须充分干燥, 要求表面光泽的塑件要求长时间预热干燥。其拉伸弹性模量为1800~2900MPa, 弯曲强度: 99~134MPa; 与钢的摩擦因数为0.21。在设计时候要注意浇注系统的料流阻力小, 浇口处外观不良, 易发生熔接痕, 要注意选择浇口位置、 形式。顶出力不宜过大。 3塑件成形工艺与设备 3.1注塑成型工艺条件 3.1.1 温度 注塑成型过程中需要控制的温度有料筒温度, 喷嘴温度和模具温度等。喷嘴温度一般略微低于料筒的最高温度, 以防止熔料在直通式喷嘴口发生”流涎现象”; 模具温度一般经过冷却系统来控制; 为了保证制件有较高的形状和尺寸精度, 应避免制件脱模后发生较大的翘曲变形, 模具温度必须低于塑料的热变形温度。ABS塑料与温度的经验数据查参考资料如表3-1所示。 表3-1 温度的经验数据 料筒温度 /℃ 喷嘴温度/℃ 模具温度/℃ 后 段 中 段 前 段 180~200 210~230 200~210 180~190 50~70 3.1.2 压力 注射成型过程中的压力包括注射压力, 保压力和背压力。注射压力用以克服熔体从料筒向型腔流动的阻力, 提供充模速度及对熔料进行压实等。保压力的大小取决于模具对熔体的静水压力, 与制件的形状, 壁厚及材料有关。对于像ABS流动性一般的塑料, 保压力应该小些, 以避免产生飞边, 保压力可取略低于注射压力。背压力是指注塑机螺杆顶部的熔体在螺杆转动后退时所受到的压力, 背压力除了可驱除物料中的空气, 提高熔体密实程度之外, 还能够使熔体内压力增大, 螺杆后退速度减小, 塑化时的剪切作用增强, 摩擦热量增大, 塑化效果提高, 根据生产经验, 背压的使用范围约为3.4~27.5MPA。 3.1.3 时间 完成一次注塑成型过程所需要的时间称为成型周期。包括注射时间, 保压时间, 冷却时间, 其它时间( 开模, 脱模, 涂脱磨剂, 安放嵌件和闭模等) , 在保证塑件质量的前提下尽量减小成型周期的各段时间, 以提高生产率, 其中, 最重要的是注射时间和冷却时间, 在实际生产中注射时间一般为3~5秒, 保压时间一般为20~120秒, 冷却时间一般为30~120秒( 这三个时间都是根据塑件的质量来决定的, 质量越大则相应的时间越长) 。确定成型周期的经验数值如表3-2所示。 表3-2 成型周期与壁厚关系 制件壁厚 /mm 成型周期 / s 制件壁厚 / mm 成型周期 / s 0.5 10 2.5 35 1.0 15 3.0 45 1.5 22 3.5 65 2.0 28 4.0 85 经过上面的经验数据和推荐值, 能够初步确定成型工艺参数, 因为各个推荐值有差别, 而且有的与实际注塑成型时的参数设置也不一致, 结合两者的合理因素, 初定制品成型工艺参数如表3-3所示。 表3-3 制品成型工艺参数初步确定 内容 特性 内容 特性 注塑机类型 螺杆式 螺杆转速( r/min) 50 喷嘴形式 直通式 模具温度(℃) 50 喷嘴温度(℃) 175 后段温度(℃) 180~210 中段温度(℃) 210~230 前段温度(℃) 200~210 注射压力(MPa) 80 保压力( MPa) 60 注射时间(s) 4 保压时间 ( s) 25 冷却时间(s) 25 其它时间( s) 成型周期(s) 60 成型收缩(%) 0.5 预热干燥温度(℃) 80~95 预热干燥时间(h) 4~5 3.2 型腔数量以及注射机有关工艺参数的校核 3.2.1型腔数量校核 为了使模具与注射机相匹配以提高生产率和经济性, 并保证塑件精度, 模具设计前应合理的确定型腔数目。 按注射机的最大注射量校核型腔数量 ( 3-2) 其中 ————注射机最大注射量, ; ————浇注系统凝料量, ; ————单个塑件的容积, ; 经过上面3.2.1可知算单个塑件的质量为103.62g; 浇道凝料的质量为 51.81g。 而凝料的容量和最小注射量应不小于注射机额定最大注射量的20%, 故可得, n=1.43, 因此型腔的数目取: n=1。 3.2.2最大注射量校核 为确保塑件质量, 注塑模一次成型的塑件质量( 包括流道凝料质量) 应在公称注塑量的35%~75%范围内, 最大可达80%, 最小不小于10%。为了保证塑件质量, 充分发挥设备的能力, 选择范围一般在50%~80%。 V=141.306 cm V公=250 cm V/ V公×100%=141.306/250×100%=56.52% 可见注射量满足要求。 3.2.3 锁模力的校核 当高压的塑料熔体充满型腔时, 会产生一个沿注射机轴向方向的很大推力, 其大小等于制品与浇注系统在分型面上的垂直投影面积之和乘以型腔内塑料熔体的平均压力。该推力应小于注射机的额定锁模力T合, 否则在注射成型时会因锁模不紧而发生溢边跑料现象。 在确定了型腔压力和分型面面积之后, 能够按参考文献中的下式校核注塑机的额定锁模力: F> A·P ( 3-3) 式中 F——注塑机额定锁模力, F=1800KN; P——为型腔内熔体压力( MPa) , 由3.2.1可知, P=30MP; A·P= 3950.05 mm2·30MPa = 118.5( KN) <1800 (KN) 可见锁模力满足要求。 3.2.4 注射压力校核 注射压力的校核是检验注射机的最大注射压能否满足制品成型的需要。为此注射机的最大注射压力应大于或等于塑件成型时所需要的注射压力, 即 Pmax>P 式中 Pmax为注射机的最大注射压力, 该注射机的Pmax为130MPa;P为塑件成型时所需要的注射压力,一般取P=40~200Mpa.制品成型时所需的注射压力一般很难确定, 它与塑料品种、 注射机类型、 喷嘴形式、 制品形状的复杂程度以及浇注系统等因素有关。在确定制品成型所需的注射压力时可利用类比法或参考各种塑料的注射成型工艺参数等, ABS的成型注射压力在78.4MPa至150MPa的范围内, 考虑本塑件平均厚度为3mm, 因此注射压力可P取为100Mpa,可见螺杆注射压力满足要求。 3.2.5 开模行程校核 根据本模具有侧抽心结构, 分开模具不只是为了取塑件,还要满足完成侧向抽芯距离所需要的开模距离的要求, 因此考虑模具的实际情况, 要按下式进行: 当Hc> H1 +H2时, 开模行程应按下式校核, S≥Hc +( 5~10) mm ( 3-5) 式中 S——注射机最大开模行程(mm),取500mm,见表4-2。 H1——塑件推出行程(mm), 取H1=25mm; H2——包括浇注系统高度在内的塑件高度, 塑件高度为45mm, 浇道凝料的高度为25mm, 因此H2=45+25=70mm; Hc——由4.8.1.4可知完成侧向抽芯距离所需要的开模距离 Hc=140.4mm,取Hc=145mm。 Hc=145mm> H1 +H2=25+70=95mm,该模具满足上面的要求的条件, 因此: Hmax=500≥Hc +( 5~10) mm ( 3-6) =155(mm) 因此满足要求。 4注射模具结构设计 4.1型腔的确定 为了使模具与注射机相匹配以提高生产率和经济性, 并保证塑件精度, 模具设计前应确定合理的型腔数目。由于本模具所要达到的生产批量为5万件, 为中批量生产, 结合本塑件结构也较复杂, 因此综合考虑本模具采用一模一腔比较合理。 4.2制品成型位置及分型面的选择 在注塑过程中, 打开模具用于取出塑件或浇注系统凝料的面, 通称为分型面。常见的取出塑件的主分型面与开模方向垂直, 分型面大多是平面, 也有倾斜面、 曲面或台阶面。分型面是决定模具机构形式的重要因素, 分型面选择的是否合适对塑件质量、 模具制造与使用性能都有很大影响, 它决定了模具的机构类型, 是模具设计中的一个重要环节。 模具设计时应根据制品的结构形状、 尺寸精度、 浇注系统形式、 推出方式、 排气方式及制造工艺等多种因素, 全面考虑, 合理选择。在选择分型面时一般应遵循以下原则: ( 1) 应便于塑件脱模和简化模具结构, 选择分型面应尽可能使塑件开模时留在动模。这样便于利用注射机锁模机构中的顶出装置带动塑件脱模机构工作。 ( 2) 分型面应尽可能的选择在不影响外观的部位, 并使其产生的溢料边易于消除和修整。 ( 3) 分型面的选择应有利于排气。 ( 4) 分型面的选择应便于模具零件的加工。 ( 5) 分型面的选择应考虑注射机的技术规格。 分析该产品的结构,分型面可设计为以下几种位置, 如图4-1所示。 ( a) ( b) 图4-1 分型面的位置方案 比较两种分型方法, 第一种分型方法塑件经过推出很容易从模具体中出来, 而且模具型腔设计起来简单, 而第二种方法要把模具设计成有哈夫块的形式, 由于该模具有侧抽芯结构, 这样模具设计起来就很困难, 因此本设计采用第一种分型方法。 4.3 浇注系统设计 注射模的浇注系统是塑料熔体从注射机的喷嘴进入模具开始到型腔为止所流经的通道。它的作用是将熔体平稳地引入模具型腔, 并在填充和固化定型过程中, 将型腔内气体顺利排出, 且将压力传递到型腔的各个部位, 以获得组织致密, 外形清晰, 表面光洁和尺寸稳定的塑件。因此, 浇注系统设计的正确与否直接关系到注射成型的效率和塑件质量。 浇注系统是由主流道、 分流道、 浇口、 冷料穴等组成。在设计模具浇注系统时, 首先考虑使得塑料熔体迅速填充型腔, 减少压力与热量损失。其次, 应从经济上考虑, 尽量减少由于流道产生的废料比例。最后, 应容易修除制品上的浇口痕迹。对浇注系统进行总体设计时, 一般应遵守如下基本原则: ( 1) 了解塑料的成型性能和塑料熔体的流动特性。 ( 2) 采用尽量短的流程, 以减小热量与压力损失。 ( 3) 浇注系统设计应有利于良好的排气。 ( 4) 防止型芯变形和嵌件位移。 ( 5) 便于修整浇口以保证塑件外观质量。 ( 6) 浇注系统应结合型腔布局同时考虑。 ( 7) 流动距离比和流动面积比的校核。 ( 8) 尽可能使塑件不进行或少进行后加工, 成型周期短, 效率高。 ( 9) 大多数热塑性塑料熔体的假塑性行为, 应予以充分考虑。 4.3.1 浇口的位置、 数量的确定 浇口是连接流道与型腔之间的一段细短通道, 是浇注系统的关键部分, 起着调节控制料流速度、 补料时间以及防止倒流等作用。浇口的类型很多, 一般常见的有侧浇口、 点浇口、 潜伏式浇口、 扇形浇口、 薄膜浇口等多种, 根据其特性不同使用在不同场合。一般情况浇口采用长度很短( 0.5~2mm) 而截面很狭窄的小浇口, 因此流动阻力很大, 细微的变化都会对塑料熔体的充填产生很大的影响。浇口设计主要包括浇口的数目、 位置形状和尺寸的设计。浇口的数目和位置主要影响充填模式, 而浇口的形状与尺寸主要影响熔体流动性质。浇口设计该保证提供一个快速、 均匀、 平衡、 单一方向流动的充填模式, 另一方面应该避免射流、 滞流、 凹陷等现象的发生。 浇口位置的选择将影响塑料件的填充行为 、 制品的最终尺寸( 公差) 、 收缩行为、 翘曲和机械性能水平、 表面质量( 外观) 。 浇口的设计需要遵循以下基本设计原则: ( 1) 浇口的尺寸及位置选择应避免熔体破裂而产生喷射和蠕动。 ( 2) 浇口的位置应有利于流动排气和补料。 ( 3) 浇口位置应使流程最短, 料流变向少, 防止型芯变形。 ( 4) 浇口位置及数量应有利于减少熔接痕和增加熔接强度。 ( 5) 浇口的位置应考虑定位作用和对塑件性能的影响。 ( 6) 浇口的位置应尽量开设在不影响塑件外观的部位。一方面应 经过分析, 本模具的浇口设计为侧浇口, 与点浇口的优势为这里能够用两板模, 而点浇口要用三板模, 简化模具结构。这里浇口的的断面形状设计为圆角梯形, 其截面厚度h一般取浇口处壁厚的1/3~2/3,这里取h=1mm; 其截面宽度b取8h,b=8mm; 浇口长度取l=1mm。 下面我就利用Moldflow分析零件的浇口位置: 最佳浇口位置图, 如下图4-2所示。 图4-2 最佳浇口区域 可是, 这只是给出一个浇口范围, 并没有确定浇口数量和具体的浇口位置。因此, 我们继续进行下面的分析。由于采用一模一腔, 同时又采用侧浇口, 侧浇口一般开设侧面而且表面要求不高的面上, 因此采用方案如图4-3: 图4-3 最佳浇口位置 图4-4 冷却图 图4-5 分析气抛 4.3.2 排气系统设计 排气系统的作用是在注射过程中, 将型腔中的气体有序而顺利的排出, 以免塑料件产生气泡, 疏松等缺陷。如果排气不良有以下危害性: ( 1) 在塑件上形成气泡、 银纹、 云雾、 接痕, 使表面轮廓不清; ( 2) 严重时在塑件表面产生焦痕; ( 3) 降低冲模速度, 影响成型周期; ( 4) 形成断续注射, 降低生产效率。 因此, 及时有序的将气体排出是十分必要的。一般有以下几种排气方式: ( 1) 排气槽排气; ( 2) 分型面排气; ( 3) 拼镶件缝隙排气; ( 4) 推杆间隙排气; ( 5) 粉末烧结合金块排气; ( 6) 排气井排气; ( 7) 强制性排气。 本塑件是小型塑件, 结合塑件特点, 能够采用分型面排气方式足以排气, 因而不采用排气槽排气。 4.4 成型零部件设计 成型零部件的设计应在保证塑件质量要求的前提下, 从便于加工、 装配、 使用、 维修等角度加以考虑。其中最重要的是凹模和凸模尺寸的设计。成型零部件工作尺寸是指成型零部件上直接决定塑件形状的有关尺寸, 主要包括型腔和型芯的径向尺寸及高度尺寸, 及孔中心距等。本设计中采用平均值法计算, 其中: 塑件的尺寸精度取IT4级精度。塑件尺寸的公差值可由参考文献表3-1可得出。模具制造精度取 = 。具体的设计如下。 4.4.1凹模结构设计 凹模是成型塑件外表面的零部件, 其结构类型有整体式和组合式。本塑料若采用整体式虽然结构简单、 牢固、 不容易变形, 塑件无拼缝痕迹, 但将造成加工困难, 浪费材料, 更换不便, 增加成本等一系列问题。因此采用组合式。这样能够改进加工工艺性, 减少热变形, 节省优质钢材。将四壁加工, 热处理、 研磨抛光后压入模套。为使内壁接缝紧密, 其连接处外侧留有0.4mm的间隙。配合H7/f7, 具体见总装配图。凹模按其结构可分为六种, 1.整体式凹模; 2.整体嵌入式凹模; 3.局部镶嵌式凹模; 4.大面积镶嵌式凹模; 5.四壁拼合式凹模; 6.拼块式凹模。对于有侧凹的圆形塑件( 如骨架类塑件和带有嵌件的塑件) , 为了塑件顺利地从凹模里取出来, 凹模常见相同的两块或多块拼成, 因此本产品采用组合式凹模。 4.4.2 型芯结构设计 型芯是用来成型塑件的内表面, 本产品采用组合试型芯, 上型芯连接方式为凸肩与A板连接, 下型芯连接方式为螺钉连接。 4.5模架的选用 注塑模模架国家标准有两个, 即GB/T12556——1990《塑料注射模中小型模架及其技术条件》和GB/T12555——1990《塑料注射模大型模架》。前者适用于模板尺寸为B×L≤560mm×900mm; 后者的模板尺寸B×L为( 630mm×630mm) ~( 1250mm× mm) 。由于塑料模具的蓬勃发展, 现在在全国的部分地区形成了自己的标准, 该设计采用非标准模架。 4.6导向与定位机构 导柱导向机构是利用导柱和导向孔之间的配合来保证模具的对合精度。注射模的导向机构主要有导柱导向和锥面定位两种类型。导柱导向机构内容包括: 导柱和导套的典型结构; 导柱和导向孔的配合以及导柱的数量和布置。导柱导向机构用于动、 定模之间的开合模导向。锥面定位机构用于动、 定模之间的精密对中定位。这里用导柱导向机构导向开合模, 用复位杆来导向脱模机构的运动。设计导柱和导套需要注意的事项有: 1) 合理布置导柱的位置, 导柱中心至模具外缘至少应有一个导柱直径的厚度; 导柱不应设在矩形模具四角的危险断面上。一般设在长边离中心线的1/3处最为安全。导柱布置方式常采用等径不对称布置, 或不等直径对称布置。 2) 导柱工作部分长度应比型芯端面高出6~8 mm, 以确保其导向与引导作用。 3) 导柱工作部分的配合精度采用H7/f7, 低精度时可采取更低的配合要求; 导柱固定部分配合精度采用H7/k6; 导套外径的配合精度采取H7/k6。配合长度一般取配合直径的1.5~2倍, 其余部分能够扩孔, 以减小摩擦, 降低加工难度。 4) 导柱能够设置在动模或定模, 设在动模一边能够保护型芯不受损坏, 设在定模一边有利于塑件脱模。 为了保证模具的平稳性及协调性, 顺利滑动, 采用4对导柱导套对称布置。材料为T8A。导向机构的装配关系图4-6。 1-推杆2-导柱3-导套4-复位杆5-推杆固定板6-推板 图4-6 导向以及脱模装配关系图 4.7脱模机构的设计 脱模机构的设计有遵循以下原则: 1.塑件滞留于动模, 以便于借助于开模力驱动脱模装置, 完成脱模动作, 使模具结构简单。 2.防止塑件变形和损坏, 正确分析塑件对模腔的黏附力的大小及其所在部位, 有针对性地选择适当的脱模装置, 使推出重心与脱模阻力中心相重合。 3.力求良好的塑件外观, 在选择顶出位置时候, 应尽量设在对塑件外观影响不大的位置。在采用推杆脱模特别要注意这个问题。 4.结构合理可靠, 脱模机构应工作可靠, 运动灵活, 制造方便, 更换容易, 且具有足够的强度和刚度。 脱模机构分类有多种方法, 但主要以脱模装置结构特征分类较实用和直观, 参考同类型零件的脱模机构, 本塑件产品的脱模机构采用顶杆脱模机构。脱模机构的设计如图4-6。 4.8侧向分型与抽芯机构设计 当塑件上具有与开模方向不同的内外侧孔或侧凹时, 塑件不能直接脱模, 必须将成型侧孔或侧凹的零件做成可动的, 称为活动型芯, 在塑件脱模前先将活动型芯抽出然后再从模中取出塑件。带动侧向成型零件作侧向移动的整个机构称为侧向分型与抽芯机构。根据动力来源的不同, 侧向分型与抽芯机构一般可分为机动、 液压或气动以及手动等三大类。机动侧向分型与抽芯机构根据传动零件的不同, 由可分为斜导柱、 弯销、 斜导槽、 斜滑块和齿轮齿条等许多不同类型的侧向分型与抽芯机构。根据塑件的特点, 本模具采用斜滑块驱动侧向分型抽芯机构, 一般斜滑块由锥行模套锁紧, 能承受较大的侧向力。 斜滑块和套模都设计在动模一边, 以便用顶出力同时达到推出塑件和侧向分型抽芯的目的。为了防止塑件对定模型芯的包紧力大于塑件对动模型芯的包紧力以及损伤, 主型芯设于动模, 这样有利于塑件顺利推出。滑块推出高度一般不超过导滑槽的2/3, 否则会影响复位。滑块斜角以不超过30度为宜。主型芯设于动模边有利于塑件脱出导向, 并防止损失的作用。 为了确保凹模斜滑块闭合锁紧, 注射成型时不至于溢料, 模具闭合后斜滑底部与模套之间应该有0.5mm间隙, 同时斜滑块还应该高出模套0.5mm。斜销固定段与模板的配合为, 与滑块呈松动配合, 一般为, 有时需要保持0.5~1mm的间隙。 4.9冷却系统设计 注射成型的过程是将温度较高的熔融塑料, 经过高压注射进入温度较低的模具中, 经过冷却固化, 从而达到所需要的制品。首先从提高生产效率的角度看, 成型过程中的成型周期是个非常重要的环节。由于在整个成型周期中50%-60%的时间用于对制品的冷却, 因此, 在成型过程中冷却时间的长短的重要意义是不言而喻的。模具温度控制系统包括冷却和加热两个方面, 由于各种塑料的性能和成型工艺要求不同, 对模具的温度要求也不一样。对于要求较低模温的材料, 只需要设计冷却系统即可, 本塑件采用的ABS就属于此类材料, 因此只要开设冷却系统就能够, 即在模具内通入冷却水将热量带走, 并经过调节水的流量来调节模温。对于要求较高模温的材料, 且模具较大时, 需要设计加热系统。 4.9.1冷却系统的设计原则 冷却系统的设计应遵循以下原则: 1) 尽量保证塑件收缩均匀, 维持模具的热平衡; 2) 冷却水孔的数量越多, 孔径越大, 则对塑件的冷却效果越好; 3) 尽可能使冷却水孔至型腔表面的距离相等, 与制件的壁厚距离相等, 经验表明, 冷却水管中心距B大约为2.5~3.5D, 冷却水管壁距模具边界和制件壁的距离为0.8~1.5B。最小不要小于10。 4) 浇口处加强冷却, 冷却水从浇口处进入最佳; 5) 应降低进水和出水的温差, 进出水温差一般不超过5℃ 6) 冷却水的开设方向以不影响操作为好, 对于矩形模具, 一般沿宽度方向开设水孔。 7) 合理确定冷却水道的形式, 确定冷却水管接头位置, 避免与模具的其它机构发生干涉。 因为对塑件进行冷却质量分析的时候, 发现冷却质量不佳的位置位于塑件的上方, 在开模前, 塑件上方要完全凝固, 因此冷却系统设在A板以及动模板上, 形状就是打成通孔的形式,如图4-7所示 图4-7水道布置 本模具采用的水嘴类型如下图4-8所示: 选用黄铜材料, 所有冷却水道水嘴与模具冷却水道孔都采用螺纹连接。在其螺纹部位, 应缠绕生胶带以防止冷却水泄漏。 图4-8水嘴 4.10模具成型零部件材料的选择 由于标准模架的座板、 垫块、 推件板、 导柱、 导套、 螺钉等标准零件可查找设计手册确定, 故此处只对成型零件的材料进行选择。由于各种模具用钢并不可能具备所有应该具备的条件, 依模具的使用情况不同而合理的选择钢材, 这是重要的。作为塑料模具的使用情况, 有种种的不同条件, 模具用钢大致应满足如下的要求: 1.机械加工性能优良; 2.抛光性能优良; 3.有良好的表面腐蚀加工性; 4.既要耐磨损, 而且又有韧性; 5.淬火性能好, 变形小; 6.电火花加工性能好; 7.有耐腐蚀性 ; 8.焊接性好。 在选择模具钢材时, 要依以下条件而逐次考虑之, 最后作出结论。1.塑件的生产批量; 2.塑件的尺寸精度; 3.制件的复杂程度; 4.制件体积大小; 5.制件外观要求。 综合考虑各方面因素, 本模具的成型部位的材料选用的是55调质钢, 硬度为250~280HB。易于切削加工, 但抛光性和耐磨性较差。导柱和导套应有足够的强度和耐磨度, 常采用20底碳钢渗碳淬火处理, 硬度为大于55HRC, 也可采用T8A或T10碳素工具钢, 经表面淬火处理。本模具采用T8A钢, 淬火处理。导柱和导套配合部分的表面粗糙度要求为Ra1.6μm。由于45、 50钢具有较高的强度和较好的切削加工性, 经适当的热处理以后, 可获得很好的韧性、 塑性和耐磨性, 材料来源光, 价格低廉, 一般可根据需要进行热处理用于顶杆、 拉料杆、 以及各种模板、 推板、 固定板、 模座等。 4.11装配总图 ( a) 图4-9主视图 ( b) 图4-10左视图 (c) 图4-11 俯视图 模具装配图 4.12模具的装配过程 本模具装配时以塑料模具中的主要工作零件如上型
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服