资源描述
执业医师考试笔记全
资料仅供参考
顺序:生理、生化、病理、药理、免疫、微生物、卫生法规、伦理、心理、预防医学、精神神经系统、传染病性病、呼吸、消化、循环、泌尿、内分泌、血液、外科总论、妇科、儿科。
生理学
第一节 细胞的基本功能
一、细胞膜的物质转运功能
1、单纯扩散:脂溶性小分子物质高浓度向低浓度一侧移动,如氧、二氧化碳等。
不需要能量
2、易化扩散:非脂溶性物质转运方式之一
(1)经载体扩散:葡萄糖、氨基酸等营养物质。
具有高特异性、有饱和现象,竞争性抑制的特点。
(2)经通道扩散:Na/K/CL/Ca等离子,特异性不高,无饱和现象。
3、主动转运:分子等从低浓度一侧移向高浓度一侧(谁主动谁耗能),消耗ATP。
1)、钠泵(钠钾泵、Na-K依赖性ATP)的意义:
(1)造成膜内外Na和K的浓度差;
(2)维持细胞的正常形态、胞质渗透压、体积;
(3)造成膜内高K,为细胞代谢的必须条件。
(4)钠泵活动造成的膜内外Na浓度势能差是其它物质继发性主动转运的动力。
2)、钠泵激活:胞内Na增加和胞外K增加。每分解一个ATP,移出3个Na,移入2个K。
3)、继发性主动转运:葡萄糖、氨基酸------小肠黏膜上皮的主动吸收。
4、出胞入胞:大分子物质(细菌、病毒、异物、脂类物质等),耗能。
二、细胞的兴奋性和生物电现象
(一) 产生机制
1、静息电位:内负外正,静K动Na
主要由K外流形成,接近K的电-化学平衡电位;
2、动作电位:主要由Na内流形成,Na平衡电位根据Nernst公式计算的数值>实际测得的动作电位超射值。
特点:“全或无”现象;具有不应期。
动作电位产生机制:上升支(动Na---Na内流)、下降支(静K---K外流)、峰电位(失活不开放)、负后电位(K蓄积膜外)、正后电位(生电性钠泵作用结果)
(二)极化、去极化、超级化、复极化和阈电位
去极化← →超级化 →复极化
-50 ———— -70———— -100
局部兴奋的特点:不是“全或无”的;
不能在膜上做远距离的传播(衰减性);
能够互相叠加(能够总和)。
(三)兴奋性和阈值
兴奋性:可兴奋细胞受刺激后产生动作电位的能力,称~。
阈电位:是细胞去极化达到产生动作电位的临界膜电位数值,称~。
阈刺激:刚能引起组织发生兴奋的最小刺激,称~。
阈强度:引起组织发生兴奋的最小刺激强度,----衡量组织兴奋性高低指标。
阈 值:引起动作电位的最小刺激强度,--衡量细胞和组织兴奋性大小的最好指标。
分期:绝对不应期,相对不应期,超长期,低长期
(四)兴奋在同一细胞上传到特点
1、有髓神经纤维动作电位传导特点:跳跃性、节能。
2、兴奋传导特点:双向性、绝缘性、安全性、不衰减性、相对不疲劳性、完整性。(五)骨骼肌的收缩功能
1、骨骼肌的神经-肌肉接头:接头前膜、接头间隙和接头后膜(终板膜---乙酰胆碱受体)组成。
接头前膜------以量子形式释放Ach
2、骨骼肌的神经传递:首先Ca2+内流,Ach(乙酰胆碱)外流。
3、终板电位特点:具有局部电位的所有特征;不能引起肌肉的收缩;兴奋传递是一对一的。
4、细胞间的传递特点:化学传递、单向传递、时间延搁、易受药物或其它环境因素变化影响。
5、阻断Ach接头传递的:美洲箭毒、α-银环蛇毒。
6、胆碱酯酶能------肌肉接头处消除Ach。
骨骼肌兴奋-收缩藕联:藕联因子--- Ca2+
第二节 血液
一、血液的组成与特征
1、内环境(细胞外液):包括组织液、血浆和少量的淋巴液、脑脊液;
特点:理化性质、动态平衡。
2、血细胞比容:血细胞在血液中所占的容积比。
3、血浆蛋白的功能(第一卷,P131页):白蛋白-----维持血浆胶压;
球蛋白---提高免疫力;
纤维蛋白原----参与凝血。
4、血浆晶压和血浆胶压的比较:记忆:亮晶晶的大盐,调节细胞内外水平衡;
粘糊糊的鸡蛋清,调节血管内外水平衡。
二、血细胞及其功能
1、红细胞特性:通透性、可塑变形性、渗透脆性、悬浮稳定性。
2、红细胞功能:携氧、缓冲血液中的酸碱物质。
3、造血原料:铁、蛋白质,记忆:铁锅炒鸡蛋,VB12和叶酸为合成核苷酸的辅因子。
4、白细胞分类计数及功能(第一卷,P135页):中性粒细胞、嗜酸性粒细胞、嗜碱性粒细胞、单核细胞、淋巴细胞。
5、PLT少到50×109/L------自发性出血倾向。
三、血液凝固和抗凝
1、凝血分内源性和外源性两条途径:“内Ⅻ外Ⅲ”
(1)内源性凝血(血管内):内Ⅻ。由因子Ⅻ活化启动,因子8缺乏引起血友病。
(2)外源性凝血(组织细胞):外Ⅲ。由因子Ⅲ活化启动,反应步骤少,速度快。
2、血浆中抗凝物质主要是:抗凝血酶和肝素;肝素是一种强抗凝剂,记忆:能里能外。
四、血型
1、血型:记忆:细胞膜上有什么原就是什么型,自己不能抗自己
抗原(凝集原)----细胞膜上;抗体(凝集素)-----血浆上
2、红细胞有D抗原——Rh阳性;红细胞无D抗原——Rh阴性。
3、输血:记忆:主侧别样红,次侧别样清。(可画图分析)
第三节 血液循环
一、心脏泵血功能
1、心动周期:心脏每舒张收缩一次所构成的机械活动周期。
2、心动周期心室压力、瓣膜、血流和容积变化(第一卷P140页)
3、心动周期中一些重点总结:
(1)左心室压力最高——快速射血期末;
(2)左心室容积最小——等容舒张期末;
(3)左心室容积最大——心房收缩期末;
(4)主动脉压力最高——快速射血期末;
(5)主动脉压力最低——等容收缩期末;
(6)主动脉血流量最大——快速射血期;
(7)室内压升高最快——等容收缩期;室内压下降最快——等容舒张期
(8)心室充盈主要靠心室舒张所致的低压抽吸作用,房缩射血仅占25%的血量。
记忆:高左心,射血末;小左心,等张末;大左心,房缩末;高主动,射血末;低主动,等收末;大流量,快射血;快室压,等收缩。
4、异长调节:心肌的收缩强度可随着其初长度(由心室前负荷决定)的改变而改变,心肌具有的这种特性称为异长自身调节。
5、动脉血压(后负荷)影响心搏出量,动脉血压升高(等容收缩期延长、射血期缩短)导致搏出量减少。
二、心肌生物电现象和电生理特性
1、2期平台期:心室肌细胞的主要特征,是心室肌动作电位复极较长的原因,决定心室肌细胞有效不应期长短。
2、心室肌细胞动作电位分期及发生机制:0期去极Na内流,1、2、3期K外流,
2期多个Ca内流,4期钠泵来决定。
3、自律细胞形成机制:快Na慢Ca。浦肯野纤维(“野马”)的4期去极化主要是Na内流;窦房结细胞4期去极化由Ca内流形成。
4、心肌跨膜电位类型和特点:
(1)快反应电位:包括心房肌、心室肌、心房传导组织、浦肯野纤维,主要Na内流;
特点:静息电位大,去极幅度大,速度快,兴奋扩布传导快。
(2)慢反应电位:包括窦房结、房室结,主要Ca和Na内流;
特点:静息电位小,去极幅度小,速度慢,兴奋扩布传导慢。
5、心肌生理特性:自律性、兴奋性、传导性、收缩性。
6、有效不应期:包括绝对不应期和局部反应期,相当于心肌收缩活动的整个收缩期和舒张早期;意义:保证心肌不发生完全强直收缩从而保证了心脏的收缩和舒张交替进行。
7、自律细胞包括:窦房结>房室交界>希氏束>浦肯野(自律性由高到低)
8、心肌传导性:浦肯野纤维---最快(4m/s),房室交界--最慢(0.02m/s);房-室延搁是心内兴奋传导的重要特点,使心脏不发生房室收缩重叠现象,保证了心室血液的充盈及泵血功能的完成。
三、血管生理
1、形成血压的基本因素:足够的血液充盈和心脏射血。
2、外周阻力:指小动脉和微动脉对血流的阻力。
3、平均动脉压=1/3收缩压+2/3舒张压
4、影响动脉血压的因素:
(1)收缩压的高低反映心脏搏出量的多少。
(2)舒张压的高低反映外周阻力的大小。
(3)主动脉和大动脉的弹性储器作用:老年人脉压大是由于动脉管壁硬化,大动脉弹性储器作用减弱,收缩压明显升高,舒张压明显降低;但老年人小动脉常同时硬化,以致外周阻力增大,使舒张压也常常升高。
5、有效滤过压=(毛细血管血压+组织液胶体渗透压)-(血浆胶体渗透压+组织液静水压)
6、右心衰:静脉回流受阻,毛细血管血压升高,引起组织水肿。
****具体见循环系统讲解
四、心血管活动的调节
1、心交感神经节后神经元末梢释放递质:去甲肾上腺素;效应:正性变时作用、正性变传导作用、正性变力作用。
2、心迷走神经节后纤维末梢释放:Ach;效应:负性变时作用、负性变传导作用、负性变力作用。
3、交感缩血管纤维的体内分布情况:皮肤>骨骼肌和内脏>冠脉和脑血管。
4、动脉压力感受器不是直接感受血压的变化,而是感受血管壁的机械牵张程度。
5、颈动脉窦和主动脉弓调节血压是负反馈机制:
(1)血压升高——心率减慢、外周血管阻力降低——血压下降;
(2)血压降低——心率加快,外周血管阻力增加——血压升高。
6、血管紧张素Ⅱ------已知的最强的缩血管活性物质之一,强烈刺激肾上腺皮质球状带细胞合成和释放醛固酮。
7、肾上腺素与β受体结合——强心;
去甲肾上腺素(NE)与α受体结合——升压。
去甲肾上腺素与β2受体结合---舒张支气管平滑肌
8、在心舒张早期,冠脉血流达高峰,动脉舒张压高低和心舒期的长短直接影响冠脉血流量。
第四节 呼吸
1、 呼吸环节: ①外呼吸(肺通气、肺换气)
②气体在血液中的运输
③内呼吸(组织换气)
一、肺通气
1、肺通气原动力:呼吸运动;
肺通气直接动力:肺内压与和大气压之间的压力差。
2、 吸气肌为:膈肌、肋间外肌;呼气肌为:腹壁肌、肋间内肌。
3、 胸腔内压为负压,生理意义:(1)牵引其扩张;(2)有利于胸腔内的腔静脉和胸导管扩张,降低PVC,促进静脉、淋巴液回流。
4、 胸膜腔内压=肺内压-肺泡弹性回缩力
5、 平静呼吸时,无论吸气或呼气,胸内压均为负压。吸气末:-5—-10mmHg,呼气末:-3—-5mmHg。
6、 肺通气阻力分:弹性阻力:平静呼吸时的主要阻力,占总阻力的70%;
非弹性阻力:包括气道阻力、惯性阻力和黏滞阻力,占总阻力30%。
7、 肺的顺应性和弹性阻力成反比:顺应性=1/弹性阻力(如同骑单车的感觉,越顺阻力越小)
8、 肺泡表面活性物质(二棕榈酰卵磷脂,DPPC)生理作用:(1)降低表面张力;(2)保持肺泡相对干燥,防止肺水肿;(3)保持肺泡的稳定性。
9、 一些概念:
(1)潮气量:每次呼吸时吸入或呼出的气量。平静呼吸时,一般以500ml计算。
(2)余气量(残气量):肺内不能呼出的气量,正常成人1000~1500ml。
(3)肺活量:潮气量+补吸气量+补呼气量,反映肺一次通气的最大能力,能够作为肺通气功能的指标。
(4)用力呼气量:不但能反映肺活量容量的大小,而且可反映呼吸所遇阻力的变化,是评价肺通气功能的首选指标。
(5)肺总量:肺活量+余气量
(6)肺通气量:每分钟吸入或呼出的气体总量,即潮气量*呼吸频率。
(7)最大通气量一般可达150L.能够反映通气功能的贮备能力,一般见通气贮量百分比表示。
(8)解剖无效腔:不参与气体交换,容积约为150ml。
(9)肺泡通气量=(潮气量-无效腔气量)*呼吸频率
肺泡通气量意义:潮气量加倍,呼吸频率减慢,通气量增加,深慢呼吸;
潮气量减倍,呼吸频率加快,通气量减少,浅快呼吸。
二、肺换气
1、肺换气关键因素:交换部位两侧的气压差。
2、影响肺换气因素:
(1)呼吸膜厚度:气体扩散速率与呼吸膜厚度成反比。
(2)呼吸膜面积:气体扩散速率与呼吸膜面积成正比。
(3)通气/血流比值:VA/Q约为0.84,这一比值的维持依赖于气体泵和血液泵的协调配合。
(4)气体分子的分子量:肺换气与分子量的平方根成反比。
(5)溶解度:肺换气与气体分子的溶解度、气体分压成正比。
三、气体在血液中的运输
1、O2的运输方式:氧合血红蛋白(HbO2)
2、CO2的运输方式:以碳酸氢盐HCO3-为主。
3、氧解离曲线:
(1)上段:相当于PO2在60~100mmHg,只要PO2不低于60mmHg,Hb氧饱和度就能维持在90%以上,可结合呼吸系统理解。
(2)中段:相当于PO2在40~60mmHg。
(3)下段:相当于PO2在15~40mmHg,反映血液中氧储备。
4、PH降低、体温升高、2,3-二磷酸甘油酸增多时,H+增高。
5、CO中毒既可妨碍Hb与O2结合,又能妨碍Hb与O2的解离,需高压氧治疗。
四、呼吸运动的调节
1、CO2:脂溶性物质,单纯扩散,主要刺激中枢化学感受器。
2、H+:刺激外周化学感受器为主。
3、缺氧:刺激外周化学感受器,抑制呼吸中枢。
4、切断迷走神经:呼吸变深变慢。
第五节 消化和吸收
一、胃肠神经体液调节的一般规律
1、胃肠神经支配及其作用:
内在:(1)粘膜下神经:支配粘液的分泌。
(2)肌间神经:支配平滑肌细胞,管消化道运动。
外来:(3)交感神经:战斗的神经,一般抑制消化。
(4)副交感神经:多数是兴奋性胆碱能纤维,促进胃肠蠕动。
2、胃肠激素及其作用(第一卷 P186页,表2-18):
促胃液素——G细胞(挤就多);蛋白质分解产物刺激分泌;作用促进胃酸和胃蛋白酶原分泌。
促胰液素——S细胞;盐酸刺激分泌;作用促进胰液和胆汁HCO3-分泌。
胆囊收缩素——I细胞(DDI);蛋白质分解产物刺激分泌;作用刺激胰液分泌和胆囊收缩;。
抑胃肽——K细胞;脂肪及分解产物刺激分泌;作用刺激胰岛素分泌,抑制胃酸和胃蛋白酶分泌;。
促胃动素——M0细胞(Mzone人);迷走神经、盐酸、脂肪刺激分泌;作用刺激胃肠运动。
二、口腔内消化
1、成分:粘蛋白、唾液淀粉酶、溶菌酶和无机盐等。
2、溶菌酶有杀菌作用,淀粉酶对淀粉的初步和部分分解。
三、胃内消化
1、胃液成分及作用:G素嗜素壁太酸,十五给你主汤圆。
2、粘液-碳酸氢盐屏障对胃肠道粘膜有保护作用。
3、VB12主要在回肠吸收,因此胃大部切除术后必须由胃肠外补充VB12,防止巨幼贫。
4、Ach结合M3受体,可被阿托品阻断;胃泌素受体为缩胆囊素-B/促胃液素受体,丙谷胺阻断组胺由胃泌酸区粘膜内的肠嗜络细胞合成和分泌,作用于壁细胞上的H2受体。
5、消化器的胃液分泌分三期
头期:包括条件和非条件反射。
胃期:胃液分泌酸度高,但胃蛋白酶原含量较头期为弱。
肠期:主要体液调节为主。
6、移行性复合运动:胃部收缩开始于胃体的中部。
7、胃排空的速度:糖>蛋白质>脂肪,混合食物完全排空需4~6小时,胃窦的运动功能-----胃排空的主要动力。
四、小肠内消化
1、肠激活酶——胰蛋白酶——糜蛋白酶。
2、胆汁成分主要为胆盐;肝胆汁呈金黄色或桔棕色,弱碱性,胆囊胆汁颜色深,呈弱酸性;作用为促进脂肪和脂溶性A、D、E、K消化吸收。
3、小肠的运动形式:紧张性收缩、分节运动、蠕动。
五、吸收
1、大肠:水分和无机盐的吸收。
2、小肠:糖、蛋白质、脂肪、维生素、胆固醇等营养物质的主要吸收场所。
第六节 能量代谢和体温
1、食物的热价:一克食物氧化时所释放出的能量。
2、氧热价:消耗一升氧所产生的热量。
3、食物的特殊动力效应:为了补充体内额外的热量消耗(特殊动力效应),进食时必须注意加上这部分多消耗的能量。
4、基础代谢率:
(1)条件:清醒、静卧、未作肌肉运动,无精神紧张,食后12~14小时,室温20~25℃。
(2)正常范围:+-15%以内,超过+-20%为病理性的。
5、体温正常值:直肠(36.9-37.9)>口腔(36.7-37.7)>腋下(36-37.4)
6、体温昼夜规律由:下丘脑视交叉上核控制。低:清晨2-6时;高:午后1-6时
体温调定点由:视前区--下丘脑前部控制。(两前)
7、人体主要产热器官肝(安静时),骨骼肌(运动时);甲状腺激素是调节产热活动的最重要的体液因素。
8、散热方式:
体温高于环境:(1)辐射散热;(2)传导散热:冰帽;(3)对流散热:气体、液体对流。
体温低于环境:蒸发散热
第七节 尿的生成和排出
1、尿量正常值:1000~ ml/d;多尿>2500ml/d;少尿<400ml/d;<100ml/d。
2、尿生成的过程包括:肾小球的滤过、肾小球和集合管的重吸收、肾小管和集合管的分泌。(水的重吸收----主要受ADH调节,Na和K的转运-----主要受醛固酮调节)
一、肾小球的滤过功能
1、正常成年人肾小球滤过率平均值为125ml/min。
2、滤过分数:肾小球滤过率/肾血浆流量=19%
3、影响肾小球滤过率的因素:有效率过压=肾小球毛细血管血压-血浆胶体渗透压-肾小球囊内压。
4、有些肾脏疾病因滤过膜上带负电荷的糖蛋白减少使电学屏障减弱,白蛋白滤过量会显著增多,出现蛋白尿。另一些疾病滤过膜的机械屏障作用减弱,使正常不能被滤过的大分子蛋白质甚至红细胞滤出形成蛋白尿或血尿。
二、肾小管与集合管的转运功能
1、人两肾每天生成原尿180L,99%被重吸收,1%被排出体外。
2、CL、Na主要在近端小管重吸收;近球小管对NaCl的吸收分主动重吸收(占2/3)和被动重吸收(占1/3)两部分,水的重吸收是被动,随Na盐的等物质的多少变化(女人是水,跟着男人盐走)。
3、NaCl在髓袢的重吸收部位在升支粗段,是一个主动重吸收NaCl、KCl的过程;速尿和利尿酸能抑制Na-2Cl-K转运,使NaCl重吸收减少,而利尿。
4、水的重吸收主要受ADH的调节,Na、K主要受醛固酮调节。
5、HCO3重吸收是以CO2扩散的形式进行的,因此重吸收优于Cl的重吸收。
6、肾糖阈:当血液中葡萄糖浓度超过180mg/100ml时,肾小管对葡萄糖的吸收已达极限,尿中将出现葡萄糖,此时的血糖浓度称为~。
7、H在近端小管主要经过Na-H交换进行;尿中每排出一个NH4,就有一个HCO3被重吸收入血。
三、尿生成的调节
1、渗透性利尿:小管液中溶质浓度升高导致的利尿现象,例如:DM和甘露醇的利尿原理。
2、肾交感神经兴奋释放NE,收缩血管,尿量减少。
3、抗利尿激素的调节,由下丘脑视上核和室旁核的神经元合成,储存于神经垂体。
(1)血浆晶体渗透压:大量失水——晶体渗透压升高——ADH升高——重吸收增多——尿量减少;大量饮清水——晶体渗透压降低——ADH降低——重吸收减少——尿量增多。
(2)循环血量:大量失血——ADH增多——重吸收增多——尿量减少。
4、血K、Na的改变:K升高Na降低——醛固酮增多;相反——醛固酮减少。醛固酮的分泌对K的改变远比Na的改变敏感。
四、清除率
1、清除率<125ml/min:肾小管对该物质必定能重吸收,但不能确定能否分泌;
清除率>125ml/min:肾小管对该物质必定能分泌,但不能确定能否重吸收。
五、尿的排放
1、骶髓初级排尿中枢受损——尿潴留;高位截瘫——尿失禁。
第八节 神经系统的功能
一、突触传递
1、影响突触前膜递质释放量的关键因素是进入突触前膜的Ca2+的数量。
2、兴奋性突触后电位(EPSP):指突触后膜在某种神经递质作用下产生局部去极化电位,Na+内流。
抑制性突触后电位(IPSP):指突触后膜在某种神经递质作用下产生局部超级化电位,Cl-内流。
3、中枢兴奋传递的特点:单向传播、中枢延搁、兴奋的总和、兴奋节律的改变、后发放、对内环境变化的敏感性和易疲劳性。
4、胆碱能纤维包括:以Ach为神经递质,大部分交感和副交感节前纤维;大多数副交感节后纤维;躯体运动神经纤维。
胆碱能受体分:毒覃碱受体(M受体):阿托品为阻断剂。
烟碱受体(N受体):筒箭毒碱能同时阻断N1、N2受体;六烃季铵阻断N1受体,十烃季铵阻断N2受体(六小十大,小的对小的,大的对大的)
5、肾上腺素能纤维包括:以NE为神经递质,多数交感节后纤维。
肾上腺素能受体分:α受体:主要为兴奋,除小肠舒张。
β受体:分β1、β2和β3受体,主要为抑制,除心肌兴奋;β3受体促进脂肪分解。
阻断剂:酚妥拉明阻断α受体;普萘洛尔阻断β受体,其中阻断β1的有阿替洛尔、美托洛尔等,阻断β2的有丁氧胺。
【神经递质分布及效应,具体见第一卷P216页,表2-24】
6、神经除对所支配的组织有调节作用外,还有营养作用,例如:脊髓灰质炎患者,脊髓前角运动神经元病变丧失功能,所支配的肌肉就发生萎缩。
二、神经反射
1、反射弧:感受器——传入神经——神经中枢——传出神经——效应器
2、非条件反射(如吸吮)是用于生存的,条件反射是后天建立的,能够消退。
3、负反馈较正反馈多见,负反馈意义在于维持机体的生理功能稳态,正反馈意义在于促进某一生理活动过程很快达到高潮并发挥最大效应。
4、突触前抑制:经过改变突触前膜的活动,最终使突触后神经元兴奋性降低,从而引起抑制的现象,主要为释放的递质减少。
三、神经系统的感觉分析功能
1、特异投射系统:点对点投射,主要引起特定感觉,并激发皮层传出冲动。
2、非特异投射系统:弥散投射,主要维持和改变大脑皮层的兴奋状态。
3、内脏痛特征:(1)定位不明确;(2)发生缓慢,持续时间长;(3)对机械性牵拉、缺血、痉挛和炎症等刺激敏感;(4)特别能引起不愉快的情绪反应,并伴有恶心、呕吐和心血管及呼吸活动改变。
4、牵涉痛:内脏疾病引起身体远隔的体表部位发生疼痛或痛觉过敏。
5、下丘脑的视交叉上核------生物节律的控制中心
四、脑电活动
1、记忆:闭目养神α,睁眼工作是β,两眼一闭是θ,呼呼大睡δ。
2、婴儿枕叶常见δ波,幼儿则一般为θ波,青春期后才出现成人型α波。
五、神经系统对姿势和躯体运动的调节
1、骨骼肌牵张反射包括腱反射、肌紧张两种类型。
(1)腱反射:指快速牵拉肌腱发生的牵张反射,腱反射为单突触反射。 快而单
(2)肌紧张:受牵拉的肌肉发生紧张性收缩,阻止被拉长,是维持躯体姿势最基本的反射活动。
2、腱反射和肌紧张的感受器都是肌梭:α运动神经元支配梭外肌纤维;γ运动神经元支配梭内肌纤维。(小草γ需室内养,对应梭内)
3、去大脑僵直:在中脑上、下丘之间切断脑干的动物,称为去大脑动物,去大脑僵直是由于切断了大脑皮层运动区和纹状体等部位与网状结构的功能联系,造成抑制区活动减弱而易化区活动明显占优势的结果。
4、小脑的主要功能:(1)前庭小脑:控制躯体平衡和眼球运动;(2)脊髓小脑:协调肢体运动;(3)皮层小脑:参与设计和编程。
5、生命中枢:延髓;中脑--------瞳孔对光反射的中枢所在部位。
第九节 内分泌
一、下丘脑的内分泌功能
1、下丘脑-腺垂体单位:位于下丘脑内侧基底部“促垂体区”的小细胞肽能神经元分泌下丘脑调节肽,经垂体门脉系统运送到腺垂体,调节腺垂体激素的合成和释放。
2、下丘脑-神经垂体单位:激素沿下丘脑-垂体束的轴突运送,并储存于神经垂体。位于下丘脑前部视上核和室旁核的大细胞肽能神经元可合成ADH和催产素,经下丘脑-垂体束的轴浆运输贮存于神经垂体。
3、下丘脑调节肽部位:(1)肾上腺皮质激素:肾上腺
(2)促肾上腺皮质激素:垂体
(3)促肾上腺皮质激素释放激素:下丘脑
二、腺垂体的内分泌功能
1、生长激素(GH)
(1)幼年缺乏GH——侏儒症;幼年GH过多——巨人症;成年后GH过多——肢端肥大症。
(2)GH的分泌,觉醒状态下极少;进入慢波睡眠后明显增多;转入异相睡眠后,减少。
(3)GH储备不足时峰值<7ug/L,常见于矮小症和侏儒症的诊断。
三、甲状腺激素
1、对脑和骨骼生长都重要的激素——甲状腺激素。在胎盘期缺碘或出生后甲状腺功能低下的儿童,易患呆小症(克汀病)。脑和骨
2、下丘脑-腺垂体-甲状腺轴调节系统:甲状腺受腺垂体TSH(促甲状腺激素)的调节,腺垂体受下丘脑TRH(促甲状腺激素释放)调节,而甲状腺激素对腺垂体释放TSH有负反馈调节作用。
四、与钙、磷代谢调节有关的激素
1、甲状旁腺激素(PTH):是甲状旁腺主细胞分泌的,具有升钙降磷的作用。
2、降钙素(CT):由甲状腺滤泡旁细胞分泌,具有降钙、磷的作用。
3、维生素D3:升高钙、磷的作用。
五、肾上腺糖皮质激素
1、糖皮质激素的基本调节效应:
升高红细胞、中性粒细胞、单核细胞、血小板数量;降低淋巴细胞核嗜酸性粒细胞 记忆:减少糖衣炮弹降淋
六、胰岛素
1、胰岛素主要是促进糖原合成,从而达到降糖的目的。
2、促进胰岛素分泌的:抑胃肽、胰高血糖素。
第十节 生殖
一、男性生殖
1、睾丸间质细胞分泌雄激素:睾酮、双氢睾酮、脱氢异雄酮体和雄烯二酮,其中以双氢睾酮的活性最高,睾酮次之。女性以E2活性最高。
2、睾酮的生理作用:(1)影响胎盘分化
(2)维持生精作用
(3)维持正常性欲
(4)促进蛋白质合成
二、女性生殖
1、卵泡期主要由颗粒细胞和内膜细胞分泌雌激素;黄体期由黄体细胞分泌孕激素和雌激素。
2、人类的雌激素中以E2的生物活性最强,孕激素以孕酮的活性最强。
生物化学
占执业2.7%,16分
第一节 蛋白质的结构与功能
一、氨基酸与多肽
(一)氨基酸结构与分类
1、蛋白质的基本机构:氨基酸,氨基酸------L-α-氨基酸(“拉氨酸”);---手拉手组成
唯一不具有不对称碳原子——甘氨酸;
含有巯基的氨基酸——半胱氨酸-------记忆:半巯
2、氨基酸的分类
(1)非极性、疏水性氨基酸:记忆:携(缬氨酸)一(异亮氨酸)本(苯丙氨酸)书,两(亮氨酸)饼(丙氨酸)干(甘氨酸),补(脯氨酸)点水
(2)极性、中性氨基酸:记忆:古(谷氨酰胺)天(天冬酰胺)乐(酪氨酸)是(丝氨酸)伴(半胱氨酸)苏(苏氨酸)三(色氨酸)的(蛋氨酸)
(3)酸性氨基酸:记忆:天(天冬氨酸)上的谷(谷氨酸)子是酸的
(4)碱性氨基酸:记忆:地上的麦(赖氨酸)乳(组氨酸)精(精氨酸)是碱的
(二)肽键与肽链
氨基酸结合键:肽键,肽键由-CO-NH-组成。
二、蛋白质结构
2、3、4级:高级结构/空间构象-----氢键
1、二级结构一圈(α-螺旋---稳定)------3.6个氨基酸,右手螺旋方向-----外侧。
2、维持三级结构的化学键-----疏水键。
一级结构:-----肽键;序列。
二级结构:一段弹簧,----氢键(稳定);---亲,你真棒
三级结构:-----亚基,整条肽链。化学键-----疏水键
四级结构:----一堆亚基。---聚合
※记忆:一级排序肽键连,二级结构是一段,右手螺旋靠氢键,三级结构是亚基,亚基聚合是四级
考题和亚基有关-----四级结构
三、蛋白质结构与功能的关系
1、蛋白质结构与功能:一级结构是基础,二三四级:表现功能的形式。
2、蛋白质构象病(高级结构改变):疯牛病、致死性家族性失眠症。
四、蛋白质的理化性质
蛋白质变性:空间构象破坏,一级结构不变,因素很多。
(1)蛋白质变性特点:溶解度降低、黏度增加、易被水解。
(2)凝固----变性后进一步发展的一种结果。
(3)蛋白质变性:可复性(血清白蛋白)和不可复性两种。-----生物活性丧失
注:蛋白酶破坏蛋白质一级结构
变性后易沉淀-----球蛋白
第二节 核酸的结构和功能
一、核酸的基本组成单位
1、磷酸+核糖+碱基→核苷酸→核酸(核苷酸是核酸的基本单位)
2、碱基分:ATGCU(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶、尿嘧啶)--爱她干脆哦
DNA碱基:ATGC------脱氧核糖核酸------记忆:爱她干脆哦------戊糖低
RNA碱基:AUGC------核糖核酸---------记忆:爱哦?干脆
3、核酸中含量相对恒定的是:P(磷酸)
4、核酸的一级结构:酯键
5、核酸分子中最为恒定的:磷
二、DNA的结构与功能
1、碱基组成规律:A=T,G=C;A+G=T+C。
2、DNA结构:(1)一级结构:核苷酸排列顺序,即碱基排列顺序。
(2)二级结构:双螺旋模式;两条链平行、反向。---两个方向
两链之间----碱基链接,碱基之间----氢键链接。
A,T---两个氢键;G,C---三个氢键
核酸一圈:10个碱基对,螺距---3.4nm
二级结构记忆:结构独特双螺旋,单链排列反平行,
碱基互补氢键配,头5尾3顺到底
(3)三级结构:超螺旋
3、DNA变性:DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。变性时维持双螺旋稳定性的氢键断裂,碱基堆积力遭到破坏---氢键,但不涉及到其一级结构的改变(不伴共价键的断裂)。---碱基在变
4、增色效应:指变性后DNA溶液的紫外吸收作用增强的效应。变性DNA在波长260nm的光吸收最强,蛋白质为280nm。
三、RNA结构与功能
1、mRNA
(1)作用:信使、模板、密码
(2)多为线状单链,局部形成双链。
(3)5’-端有帽子结构(“鸟无帽子”):帽子结构中多为:m7G(7-甲基鸟苷)
3’-端为多聚腺苷酸(polyA)尾巴,polyA增加mRNA的稳定性(“3个尾巴多稳定”)
记忆:鸟无帽子,3个尾巴多(多聚腺苷酸)稳定
2、tRNA
(1)作用:转运,分子量最小。---蛋白质合成搬运工
(2)tRNA的3’-端为CCA-OH----搬运部位
(3)tRNA的二级结构:三叶草;三级结构:倒L型。
3、rRNA
(1)作用:合成蛋白质。--场所
(2)rRNA是最多的一类RNA,也是3类RNA中分子量最大的;rRNA与核糖体蛋白共同构成核糖体,核糖体蛋白为蛋白质合成场所。
第三节 酶
一、酶的催化作用
本质----蛋白质,有催化作用。
1、酶分为:单纯蛋白质的酶和结合蛋白质的酶,清蛋白----单纯蛋白质的酶。-无辅助因子
2、体内结合蛋白质的酶----多数
结合蛋白质酶:酶蛋白和辅助因子组成,辅助因子分为辅酶、辅基;辅酶和酶蛋白以非共价键结合,辅基与酶蛋白结合牢固,一种酶蛋白只能与一种辅助因子结合,酶蛋白----决定酶反应特异性。
结合蛋白质酶:酶蛋白:决定酶反应特异性
辅助因子:辅基:结合牢固,由多种金属离子
辅酶:结合不牢固
3、酶的活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的局部空间结构。
必须集团:酶的活性所必须;
4、酶的高效催化-经过降低反应的活化能实现的。
二、辅酶与酶辅助因子
(一)维生素与辅酶关系
记忆:1(B1)脚(焦磷酸磺胺素)踢(TPP),
2(B2)皇(磺素腺嘌呤二核苷酸)飞(FAD),单(黄素单核苷酸)波段(FMN),
酶1P NAD,酶2P 多个P(NADP),----烟酰胺,维生素PP(尼克酰胺)
辅酶A、泛酸(遍多酸)来, VB6醛(磷酸吡哆醛)来到。
三、酶促反应动力学
1、米氏方程 V= Vmax[S]
Km+[S]
Km:反应速度一半时的[S],亦称米氏常数,Km增大,Vmax不变。
---底物浓度,亲和力
2、酶促反应的条件:① PH值:一般为最适为7.4,
胃蛋白酶---- 1.5,胰蛋白酶------7.8
②温 度:37—40℃
③合适的底物
四、抑制剂对酶促反应的抑制作用
1、竞争性抑制:Km增大,Vmax不变
非竞争性抑制:Km不变,Vmax降低
2、酶原激活:无活性的酶原变成有活性酶的过程。
(1)盐酸(H+)可激活的酶原:胃蛋白酶原
(2)肠激酶可激活的消化酶或酶原:胰蛋白酶原
(3)胰蛋白酶可激活的消化酶或酶原:糜蛋白酶原
(4)其余的酶原都是胰蛋白酶结合的
3、同工酶:催化功能相同,但结构、理化性质和免疫学性质各不相同的酶。LDH(乳酸脱氢酶)分5种。伤心----LDH4
核酶----RNA
第四节 糖代谢
一、糖的分解代谢
(一)糖酵解
1、三个阶段:葡萄糖——3磷酸甘油醛,消耗ATP;
3磷酸甘油醛——丙酮酸,生成ATP;
丙酮酸——乳酸
脱氢过程:3-磷酸甘油醛脱氢酶催化----唯一一次脱氢反映;葡萄糖磷酸化为6-磷酸葡萄糖,由己糖激酶催化,不可逆;6-磷酸果糖转变成1,6双磷酸果糖,由6-磷酸果糖激酶催化,不可逆;1,3二磷酸甘油醛氧化为1,3二磷酸甘油酸,生成1分子ATP;磷酸烯醇式丙酮酸转变成丙酮酸,由丙酮酸激酶催化,有ATP生成,不可逆;2,6双磷酸果糖是6-磷酸果糖激酶最强的变构激活剂。)
2、糖酵解的3个关键酶(限速酶):己糖激酶、6磷酸果糖激酶-1、丙酮酸激酶。
记忆:六(6磷酸果糖激酶-1)斤(己糖激酶)冰(丙酮酸激酶)糖
3、磷酸越多,能量越多。1,6二磷酸>6磷酸>葡萄糖
(二)、糖有氧氧化
1、三羧酸循环 原料: 乙酰CoA------循环形成2个CO2
(1)生理意义:产生能量,而不是产生物质,整个反应过程中草酰乙酸、柠檬酸量不变。
(2)关键酶:柠檬酸合酶、异柠檬酸脱氢酶、α—酮戊二酸脱氢酶(两柠檬一个酮)
所有关键酶特点:限速酶,单向酶
水的形成----脱氢形成。
(3)6个关键物质:记忆:一(乙酰CoA)琥(琥珀酸)柠(柠檬酸)住(α—酮戊二酸)草(草酰乙酸)苹(苹果酸)
(4)发生部位:线粒体,为不可逆反应。
2、底物水平磷酸化:“两酸变一酸”,最终产物为琥珀酸。
3、生成物质:
(1)1分子葡萄糖有氧氧化生成30或32个ATP;
(2)1分子丙酮酸有氧氧化生成15个ATP;
(3)三羧酸循环一周4次脱氢生成10个ATP、1份FADH、2份CO2、3份NADH;
(4)除了琥珀酸脱氢酶辅酶是FAD,脱掉----FADH2,其余都是NAD。
二、糖原的合成与分解
1、糖原分解:首先生成1-磷酸葡萄糖,再转变为6-磷酸葡萄糖,6-磷酸葡萄糖只存在于肝和肾。
2、糖原合成记忆: 6(6-磷酸葡萄糖),1(1-磷酸葡萄糖)儿童节发糖
分解逆向
3、糖原分解的限速酶:磷酸化酶。
三、糖异生
1、糖异生的原料:记忆:乳(乳酸)房干(甘油)了,安(氨基酸)心吃两饼(丙酮酸、丙酸)干
2、糖异生的关键酶:记忆:笨手(丙酮酸羧化酶)郭二(果糖二磷酸酶)泼硫酸(葡萄糖-6-磷酸酶)。
3、糖异生的生理意义:利于乳酸的利用。
四、磷酸戊糖途径
1、关键酶:6-磷酸葡萄糖脱氢酶。
2、产物:核糖、NADPH,NADPH+H维持细胞中还原型谷胱甘肽(GSH)的正常含量。
五、血糖及调节
1、
展开阅读全文