收藏 分销(赏)

高三数学综合复习知识点整理.doc

上传人:天**** 文档编号:4652337 上传时间:2024-10-08 格式:DOC 页数:18 大小:2.12MB
下载 相关 举报
高三数学综合复习知识点整理.doc_第1页
第1页 / 共18页
高三数学综合复习知识点整理.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述
第1讲 集 合 1.集合:某些指定的对象集在一起成为集合 (1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作; (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系: (1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或); 集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B; (2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U; (2)若S是一个集合,AS,则,=称S中子集A的补集; (3)简单性质:1)()=A;2)S=,=S 4.交集与并集: (1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。 (2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。 注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 5.集合的简单性质: (1) (2) (3) (4) (5)(A∩B)=(A)∪(B), (A∪B)=(A)∩(B)。 【典例解析】 题型1:集合的概念 例1.(2009广东卷理)已知全集,集合和 的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有 ( ) A. 3个 B. 2个 C. 1个 D. 无穷多个 答案 B 解析 由得,则,有2个,选B. 例2.(2009山东卷理)集合,,若,则的值为 ( ) A.0 B.1 C.2 D.4 答案 D 解析 ∵,,∴∴,故选D. 题型2:集合的性质 例3.(2009山东卷理)集合,,若,则的值为 ( ) A.0 B.1 C.2 D.4 答案 D 解析 ∵,,∴∴,故选D. 1.设全集U=R,A={x∈N︱1≤x≤10},B={ x∈R︱x 2+ x-6=0},则下图中阴影表示的集合为 ( ) A.{2} B.{3} C.{-3,2} D.{-2,3} 2. 已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y2-6y+8≤0},若A∩B≠φ,则实数a的取值范围为( ). 解:由题知可解得A={y|y>a2+1或y<a}, B={y|2≤y≤4},我们不妨先考虑当A∩B=φ时a的范围.如图 由,得 ∴或. 即A∩B=φ时a的范围为或.而A∩B≠φ时a的范围显然是其补集,从而所求范围为. 注:一般地,我们在解时,若正面情形较为复杂,我们就可以先考虑其反面,再利用其补集,求得其解,这就是“补集思想”. 例4.已知全集,A={1,}如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由 解:∵; ∴,即=0,解得 当时,,为A中元素; 当时, 当时, ∴这样的实数x存在,是或。 另法:∵ ∴, ∴=0且 ∴或。 点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当时,”不能满足集合中元素的互异性。此题的关键是理解符号是两层含义:。 变式题:已知集合,,,求的值。 解:由可知, (1), 或(2) 解(1)得, 解(2)得, 又因为当时,与题意不符, 所以,。 题型3:集合的运算 例5.(2008年河南省上蔡一中高三月考)已知函数的定义域集合是A,函数的定义域集合是B (1)求集合A、B (2)若AB=B,求实数的取值范围. 解 (1)A= B= (2)由AB=B得AB,因此 所以,所以实数的取值范围是 例6.(2009宁夏海南卷理)已知集合,则( ) A. B. C. D. 答案 A 解析 易有,选A 题型4:图解法解集合问题 例7.(2009年广西北海九中训练)已知集合M=,N=,则 ( ) A. B. C. D. 答案 C 例8.设全集,函数的定义域为A,集合,若恰好有2个元素,求a的取值集合。 解: 时, ∴ ∴ ,∴ ∴ 当时,在此区间上恰有2个偶数。 题型7:集合综合题 例11.(1999上海,17)设集合A={x||x-a|<2},B={x|<1},若AB,求实数a的取值范围。 解:由|x-a|<2,得a-2<x<a+2,所以A={x|a-2<x<a+2}。 由<1,得<0,即-2<x<3,所以B={x|-2<x<3}。 因为AB,所以,于是0≤a≤1。 第二讲 函数概念与表示 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x 2.构成函数的三要素:定义域、对应关系和值域 (1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误; ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。 (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题 ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。 3.两个函数的相等: 函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。 4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示 5.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。 注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。 (2)“都有唯一”包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思 6.常用的函数表示法 (1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; (2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系 7.分段函数 若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数 若y=f(u),u=g(x),xÎ(a,b),uÎ(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域 【典例解析】 题型1:函数概念 例1.21.(2009天津卷文)设函数则不等式的解集是( ) A. B. C. D. 答案 A 解析 由已知,函数先增后减再增 当,令 解得。 当, 故 ,解得 变式题:(2009北京文)已知函数若,则 . 答案 解析 本题主要考查分段函数和简单的已知函数值求的值. 属于基础知识、基本运算的考查. 由,无解,故应填. 例2. (1)函数对于任意实数满足条件,若则__ ________; 解:(1)由得, 所以,则 题型二:判断两个函数是否相同 例3.试判断以下各组函数是否表示同一函数? (1)f(x)=,g(x)=; (2)f(x)=,g(x)= (3)f(x)=,g(x)=()2n-1(n∈N*); (4)f(x)=,g(x)=; (5)f(x)=x2-2x-1,g(t)=t2-2t-1。 解:(1)由于f(x)==|x|,g(x)==x,故它们的值域及对应法则都不相同,所以它们不是同一函数; (2)由于函数f(x)=的定义域为(-∞,0)∪(0,+∞),而g(x)=的定义域为R,所以它们不是同一函数; (3)由于当n∈N*时,2n±1为奇数, ∴f(x)==x,g(x)=()2n-1=x,它们的定义域、值域及对应法则都相同,所以它们是同一函数; (4)由于函数f(x)=的定义域为{x|x≥0},而g(x)=的定义域为{x|x≤-1或x≥0},它们的定义域不同,所以它们不是同一函数; (5)函数的定义域、值域和对应法则都相同,所以它们是同一函数 点评:对于两个函数y=f(x)和y=g(x),当且仅当它们的定义域、值域、对应法则都相同时,y=f(x)和y=g(x)才表示同一函数若两个函数表示同一函数,则它们的图象完全相同,反之亦然。 (1)第(5)小题易错判断成它们是不同的函数,原因是对函数的概念理解不透要知道,在函数的定义域及对应法则f不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如f(x)=x2+1,f(t)=t2+1,f(u+1)=(u+1)2+1都可视为同一函数。(2)对于两个函数来讲,只要函数的三要素中有一要素不相同,则这两个函数就不可能是同一函数 题型三:函数定义域问题 例4.求下述函数的定义域: (1); (2) 解:(1),解得函数定义域为. (2) ,(先对a进行分类讨论,然后对k进行分类讨论), ①当a=0时,函数定义域为; ②当时,得, 1)当时,函数定义域为, 2)当时,函数定义域为, 3)当时,函数定义域为; ③当时,得, 1)当时,函数定义域为, 2)当时,函数定义域为, 3)当时,函数定义域为。 点评:在这里只需要根据解析式有意义,列出不等式,但第(2)小题的解析式中含有参数,要对参数的取值进行讨论,考察学生分类讨论的能力 变式题:已知函数f(x)=的定义域是R,则实数a的取值范围是( ) A.a> B.-12<a≤0 C.-12<a<0 D.a≤ 解:由a=0或可得-12<a≤0,答案B。 题型四:函数值域问题 例5.求下列函数的值域: (1);(2);(3); (4);(5);(6); (7);(8);(9)。 解:(1)(配方法), ∴的值域为 改题:求函数,的值域。 解:(利用函数的单调性)函数在上单调增, ∴当时,原函数有最小值为;当时,原函数有最大值为 ∴函数,的值域为。 (2)求复合函数的值域: 设(),则原函数可化为 又∵, ∴,故, ∴的值域为 (3)(法一)反函数法: 的反函数为,其定义域为, ∴原函数的值域为 (法二)分离变量法:, ∵,∴, ∴函数的值域为。 (4)换元法(代数换元法):设,则, ∴原函数可化为,∴, ∴原函数值域为 注:总结型值域, 变形:或 (5)三角换元法: ∵,∴设, 则 ∵,∴,∴, ∴, ∴原函数的值域为 (6)数形结合法:, ∴,∴函数值域为。 (7)判别式法:∵恒成立,∴函数的定义域为。 由得: ① ①当即时,①即,∴ ②当即时,∵时方程恒有实根, ∴△, ∴且, ∴原函数的值域为。 (8) ∵,∴, ∴, 当仅当时,即时等号成立。 ∴, ∴原函数的值域为。 (9)(法一)方程法:原函数可化为:, ∴(其中), ∴, ∴, ∴, ∴, ∴原函数的值域为。 点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。 题型五:函数解析式 例6.(1)已知,求; (2)已知,求; (3)已知是一次函数,且满足,求; (4)已知满足,求。 解:(1)∵, ∴(或)。 (2)令(),则, ∴,。 (3)设,则, ∴,, ∴。 (4) ①, 把①中的换成,得 ②, ①②得, ∴ 点评:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法。 【总结】 1.求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知求或已知求:换元法、配凑法; (3)已知函数图像,求函数解析式; (4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法; (5)应用题求函数解析式常用方法有待定系数法等。 2.求函数定义域一般有三类问题: (1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合; (2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义; (3)已知的定义域求的定义域或已知的定义域求的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知的定义域,其复合函数的定义域应由解出。 3.求函数值域的各种方法 函数的值域是由其对应法则和定义域共同决定的。其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域。 ①直接法:利用常见函数的值域来求 一次函数y=ax+b(a0)的定义域为R,值域为R; 反比例函数的定义域为{x|x0},值域为{y|y0}; 二次函数的定义域为R, 当a>0时,值域为{}; 当a<0时,值域为{}。 ②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; ③分式转化法(或改为“分离常数法”) ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域 第3讲 函数基本性质 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域并判断其定义域是否关于原点对称; 确定f(-x)与f(x)的关系; 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; ②设,的定义域分别是,那么在它们的公共定义域上: 奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇 2.单调性 (1)定义:一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数); 注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 (3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射g : x→u=g(x) 的象集: ①若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 (4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2∈D,且x1<x2; 作差f(x1)-f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)-f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。 (5)简单性质 ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数增函数是增函数; 减函数减函数是减函数; 增函数减函数是增函数; 减函数增函数是减函数。 3.最值 (1)定义: 最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。 注意: 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。 (2)利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 4.周期性 (1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数; (2)性质:①f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为 【典例解析】 题型一:判断函数的奇偶性 例1.讨论下述函数的奇偶性: 解:(1)函数定义域为R, ∴f(x)为偶函数; (另解)先化简:,显然为偶函数;从这可以看出,化简后再解决要容易得多。 (2)须要分两段讨论: ①设 ②设 ③当x=0时f(x)=0,也满足f(-x)=-f(x); 由①、②、③知,对x∈R有f(-x) =-f(x), ∴f(x)为奇函数; (3),∴函数的定义域为, ∴f(x)=log21=0(x=±1) ,即f(x)的图象由两个点 A(-1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,∴f(x)既是奇函数,又是偶函数; 点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变) 题型三:判断证明函数的单调性 例5. (本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数. (1)若,求的值; (2)若对于恒成立,求实数m的取值范围. 【解】(1) 由条件可知,解得 ∵ (2)当 即 故m的取值范围是 题型四:函数的单调区间 例7.已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,则 ( ). A. B. C. D. 答案 D 解析 因为满足,所以,所以函数是以8为周期的周期函数, 则,,,又因为在R上是奇函数, ,得,,而由得, 又因为在区间[0,2]上是增函数,所以,所以,即,故选D. 例8(1)求函数的单调区间; (2)已知若试确定的单调区间和单调性。 解:(1)函数的定义域为, 分解基本函数为、 显然在上是单调递减的,而在上分别是单调递减和单调递增的。根据复合函数的单调性的规则: 所以函数在上分别单调递增、单调递减。 (2)解法一:函数的定义域为R, 分解基本函数为和。 显然在上是单调递减的,上单调递增; 而在上分别是单调递增和单调递减的。且, 根据复合函数的单调性的规则: 所以函数的单调增区间为;单调减区间为。 解法二:, , 令 ,得或, 令 ,或 ∴单调增区间为;单调减区间为。 点评:该题考察了复合函数的单调性。要记住“同向增、异向减”的规则。 题型六:最值问题 例11.(2009江苏卷)(本小题满分16分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (1)若,则 (2)当时, 当时, 综上 题型七:周期问题 例13.若y=f(2x)的图像关于直线和对称,则f(x)的一个周期为( ) A. B. C. D. 解:因为y=f(2x)关于对称,所以f(a+2x)=f(a-2x)。 所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x)。 同理,f(b+2x) =f(b-2x), 所以f(2b-2x)=f(2x), 所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x)。 所以f(2x)的一个周期为2b-2a, 故知f(x)的一个周期为4(b-a)。选项为D。 点评:考察函数的对称性以及周期性,类比三角函数中的周期变换和对称性的解题规则处理即可。若函数y=f(x)的图像关于直线x=a和x=b对称(a≠b),则这个函数是周期函数,其周期为2(b-a) 例14.已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。 ①证明:; ②求的解析式; 解:∵是以为周期的周期函数, ∴, 又∵是奇函数, ∴, ∴。 ②当时,由题意可设, 由得, ∴, ∴。 【总结】 1.判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)= ±f(x)óf(-x) f(x)=0; 2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称这是函数具备奇偶性的必要条件。稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立函数的奇偶性是其相应图象的特殊的对称性的反映; 3.若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件; 4.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据图象的对称性可以判断函数的奇偶性。 5.若存在常数T,使得f(x+T)=f(x)对f(x)定义域内任意x恒成立,则称T为函数f(x)的周期,一般所说的周期是指函数的最小正周期周期函数的定义域一定是无限集。 6.单调性是函数学习中非常重要的内容,应用十分广泛,由于新教材增加了“导数”的内容,所以解决单调性问题的能力得到了很大的提高,因此解决具体函数的单调性问题,一般求导解决,而解决与抽象函数有关的单调性问题一般需要用单调性定义解决。注意,关于复合函数的单调性的知识一般用于简单问题的分析,严格的解答还是应该运用定义或求导解决 第4讲 基本初等函数 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根, 1)当为奇数时,次方根记作; 2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作 ②性质:1);2)当为奇数时,; 3)当为偶数时,。 (2).幂的有关概念 ①规定:1)N*;2); n个 3)Q,4)、N* 且 ②性质:1)、Q); 2)、 Q); 3) Q)。 (注)上述性质对r、R均适用。 (3).对数的概念 ①定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数 1)以10为底的对数称常用对数,记作; 2)以无理数为底的对数称自然对数,,记作; ②基本性质: 1)真数N为正数(负数和零无对数);2); 3);4)对数恒等式:。 ③运算性质:如果则 1); 2); 3)R) ④换底公式: 1);2)。 2.指数函数与对数函数 (1)指数函数: ①定义:函数称指数函数, 1)函数的定义域为R;2)函数的值域为; 3)当时函数为减函数,当时函数为增函数。 ②函数图像: 1)指数函数的图象都经过点(0,1),且图象都在第一、二象限; 2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴); 3)对于相同的,函数的图象关于轴对称 ③函数值的变化特征: ①, ②, ③ ①, ②, ③, (2)对数函数: ①定义函数称对数函数, 1)函数的定义域为;2)函数的值域为R; 3)当时函数为减函数,当时函数为增函数; 4)对数函数与指数函数互为反函数 ②函数图像: 1)对数函数的图象都经过点(0,1),且图象都在第一、四象限; 2)对数函数都以轴为渐近线(当时,图象向上无限接近轴;当时,图象向下无限接近轴); 4)对于相同的,函数的图象关于轴对称。 ③函数值的变化特征: ①, ②, ③. ①, ②, ③. (3)幂函数 1)掌握5个幂函数的图像特点 2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a>0时过(0,0) 4)幂函数一定不经过第四象限 【典例解析】 题型1:指数运算 例1.(1)化简: 解:(1)原式= 。 例2.(1)已知,求的值 解:∵, ∴, ∴, ∴, ∴, ∴, 又∵, ∴。 题型2:对数运算 (2).幂函数的图象经过点,则满足=27的x的值是 . 答案 例3.计算 (1);(2); 解:(1)原式 ; (2)原式 ; 例4.设、、为正数,且满足 (1)求证:; (2)若,,求、、的值。 证明:(1)左边 ; 解:(2)由得, ∴……………① 由得由①②得 由①得,代入得, ∵, ∴ 由③、④解得,,从而。 题型3:指数、对数方程 例5.已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意的,不等式恒成立,求k的取值范围. 解 (1) 因为是R上的奇函数,所以 从而有 又由,解得 (2)解法一:由(1)知 由上式易知在R上为减函数,又因是奇函数,从而不等式 等价于 因是R上的减函数,由上式推得 即对一切从而 解法二:由(1)知 又由题设条件得 即 整理得,因底数2>1,故 上式对一切均成立,从而判别式 例6. 设,若函数,有大于零的极值点,则( B ) A. B. C. D. 【解析】,若函数在上有大于零的极值点,即有正根。当有成立时,显然有,此时,由我们马上就能得到参数的范围为. 点评:上面两例是关于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解。 题型4:指数函数的概念与性质 例7.设( ) A.0  B.1 C.2 D.3 解:C;,。 点评:利用指数函数、对数函数的概念,求解函数的值 题型5:指数函数的图像与应用 例9.若函数的图象与x轴有公共点,则m的取值范围是( ) A.m≤-1 B.-1≤m<0 C.m≥1 D.0<m≤1 解: 画图象可知-1≤m<0。 答案为B。 点评:本题考察了复杂形式的指数函数的图像特征,解题的出发点仍然是两种情况下函数的图像特征。 例10.设函数的取值范围。 解:由于是增函数,等价于    ① 1)当时,,①式恒成立; 2)当时,,①式化为,即; 3)当时,,①式无解; 综上的取值范围是。 题型6:对数函数的概念与性质 例11.(1)函数的定义域是( ) A. B. C. D. (2)设f(x)=,则的定义域为( ) A. B.(-4,-1)(1,4) C.(-2,-1)(1,2) D.(-4,-2)(2,4) 解:(1)D(2)B。 点评:求函数定义域就是使得解析是有意义的自变量的取值范围,在对数函数中只有真数大于零时才有意义。对于抽象函数的处理要注意对应法则的对应关系。 例13.当a>1时,函数y=logax和y=(1-a)x的图象只可能是( ) 解:当a>1时,函数y=logax的图象只能在A和C中选, 又a>1时,y=(1-a)x为减函数。 答案:B 点评:要正确识别函数图像,一是熟悉各种基本函数的图像,二是把握图像的性质,根据图像的性质去判断,如过定点、定义域、值域、单调性、奇偶性 题型8:指数函数、对数函数综合问题 例16.已知函数为常数) (1)求函数f(x)的定义域; (2)若a=2,试根据单调性定义确定函数f(x)的单调性 解:(1)由 ∵a>0,x≥0 ∴f(x)的定义域是。 (2)若a=2,则 设 , 则 故f(x)为增函数。 例18.设,,且,求的最小值。 解:令 , ∵,,∴。 由得,∴, ∴,∵,∴,即,∴, ∴, ∵,∴当时,。 【总结】 1.(其中)是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底; 2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验; 3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其中单调性是使用率比较高的知识; 4.指数、对数函数值的变化特点(上面知识结构表中的12个小点)是解决含指数、对数式的问题时使用频繁的关键知识,要达到滚瓜烂熟,运用自如的水平,在使用时常常还要结合指数、对数的特殊值共同分析; 5.含有参数的指数、对数函数的讨论问题是重点题型,解决这类问题的最基本的分类方案是以“底”大于1或小于1分类; 6.在学习中含有指数、对数的复合函数问题大多数都是以综合形式出现,如与其它函数(特别是二次函数)形成的复合函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要努力提高综合能
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服