资源描述
2019年高考真题解答题专项训练:极坐标与参数方程(教师版)
1.(2019.江苏卷)在极坐标系中,已知两点,直线l的方程为.
(1)求A,B两点间的距离;
(2)求点B到直线l的距离.
【答案】(1);
(2)2.
【解析】
【分析】
(1)由题意,在中,利用余弦定理求解的长度即可;
(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B的坐标结合几何性质可得点B到直线的距离.
【详解】
(1)设极点为O.在△OAB中,A(3,),B(,),
由余弦定理,得AB=.
(2)因为直线l的方程为,
则直线l过点,倾斜角为.
又,所以点B到直线l的距离为.
【点睛】
本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.
2.(2019.全国三卷)如图,在极坐标系中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.
(1)分别写出,,的极坐标方程;
(2)曲线由,,构成,若点在上,且,求的极坐标.
【答案】(1) ,,,
(2) ,,,.
【解析】
【分析】
(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中的取值范围.
(2)根据条件逐个方程代入求解,最后解出点的极坐标.
【详解】
(1)由题意得,这三个圆的直径都是2,并且都过原点.
,
,.
(2)解方程得,此时P的极坐标为
解方程得或,此时P的极坐标为或
解方程得,此时P的极坐标为
故P的极坐标为,,,.
【点睛】
此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.
3.(2019.全国二卷)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
【答案】(1),l的极坐标方程为;(2)
【解析】
【分析】
(1)先由题意,将代入即可求出;根据题意求出直线的直角坐标方程,再化为极坐标方程即可;
(2)先由题意得到P点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.
【详解】
(1)因为点在曲线上,
所以;
即,所以,
因为直线l过点且与垂直,
所以直线的直角坐标方程为,即;
因此,其极坐标方程为,即l的极坐标方程为;
(2)设,则, ,
由题意,,所以,故,整理得,
因为P在线段OM上,M在C上运动,所以,
所以,P点轨迹的极坐标方程为,即.
【点睛】
本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.
4.(2019.全国一卷)在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
【答案】(1);;(2)
【解析】
【分析】
(1)利用代入消元法,可求得的直角坐标方程;根据极坐标与直角坐标互化原则可得的直角坐标方程;(2)利用参数方程表示出上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.
【详解】
(1)由得:,又
整理可得的直角坐标方程为:
又,
的直角坐标方程为:
(2)设上点的坐标为:
则上的点到直线的距离
当时,取最小值
则
【点睛】
本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.
试卷第5页,总6页
展开阅读全文