1、三角函数高考题及练习题(含答案) 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数yAsin(x)的图象及性质2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等)3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易这几年的高考加强了对三角函数定义、图象和性质的考查在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等1.
2、函数y2sin21是最小正周期为_的_(填“奇”或“偶”)函数答案:奇解析:ycossin2x.2. 函数f(x)lgxsinx的零点个数为_答案:3解析:在(0,)内作出函数ylgx、ysinx的图象,即可得到答案3. 函数y2sin(3x),的一条对称轴为x,则_答案:解析:由已知可得3k,kZ,即k,kZ.因为|,所以.4. 若f(x)2sinx(01)在区间上的最大值是,则_答案:解析:由0x,得0x,则f(x)在上单调递增,且在这个区间上的最大值是,所以2sin,且00,0)的部分图象如图所示(1) 求f(0)的值;(2) 若00),所得函数的图象关于直线x对称(1) 求m的最小值;
3、(2) 证明:当x时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x1,x2(0,),x1x2,且f(x1)f(x2)1,求x1x2的值(1) 解:f(x)sin2x2sinxcosx3cos2xsin2x3cos2xsin2x2cos2.因为将f(x)的图象沿x轴向左平移m个单位(m0),得到g(x)2的图象,又g(x)的图象关于直线x对称,所以2k,即m(kZ)因为m0,所以m的最小值为.(2) 证明:因为x,所以42x,所以f(x)在上是减函数所以当x1、x2,且x1f(x2),从而经过任意两点(x1,f(x1)和(x2,f(x2)的直线的斜率k0.(1) 若yf(x)
4、在上单调递增,求的取值范围;(2) 令2,将函数yf(x)的图象向左平移个单位,再向上平移1个单位,得到函数yg(x)的图象,区间a,b(a,bR且a0,根据题意有 0.(2) f(x)2sin2x,g(x)2sin212sin1,g(x)0sinxk或xk,kZ, 即g(x)的零点相邻间隔依次为和,故若yg(x)在a,b上至少含有30个零点,则ba的最小值为1415. 已知函数f(x)sin(x)cos(x)(00)为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为.(1) 求f的值;(2) 将函数yf(x)的图象向右平移个单位后,得到函数yg(x)的图象,求函数g(x)的单调递减区间解
5、:(1) f(x)sin(x)cos(x)22sin.因为f(x)为偶函数,所以对xR,f(x)f(x)恒成立,因此sinsin,即sinxcoscosxsinsinxcos()cosxsin,整理得sinxcos0.因为0,且xR,所以cos0.又0,故.所以f(x)2sin2cosx.由题意得2,所以2,故f(x)2cos2x,因此f2cos.(2) 将f(x)的图象向右平移个单位后,得到f的图象,所以g(x)f2cos2cos.当2k2x2k(kZ),即kxk(kZ)时,g(x)单调递减,因此g(x)的单调递减区间为(kZ)题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x
6、)2sin2cos2x1,xR.(1) 求f(x)的最小正周期;(2) 若h(x)f(xt)的图象关于点对称,且t(0,),求t的值;(3) 当x时,不等式|f(x)m|0,0,|),在同一周期内,当x时,f(x)取得最大值3;当x时,f(x)取得最小值3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x时,函数h(x)2f(x)1m有两个零点,求实数m的取值范围解:(1) 由题意,A3,T2,2.由22k得2k,kZ.又 , , f(x)3sin.(2) 由2k2x2k,得2k2x2k,即kxk,kZ. 函数f(x)的单调递减区间为,kZ.(3) 由题意知,
7、方程sin在上有两个根 x, 2x. , m13,7)1. (2013江西卷)设f(x)sin3xcos3x,若对任意实数x都有|f(x)|a,则实数a的取值范围是_答案:a2解析:f(x)sin3xcos3x2sin,|f(x)|2,所以a2.2. (2013天津卷)函数f(x)sin在区间上的最小值是_答案:3. (2013全国卷)函数ycos(2x)(0,0)若f(x)在区间上具有单调性,且fff,则f(x)的最小正周期为_答案:解析:由f(x)在区间上具有单调性,ff知,函数f(x)的对称中心为,函数f(x)的对称轴为直线x,设函数f(x)的最小正周期为T,所以T,即T,所以,解得T.
8、5. (2014福建卷)已知函数f(x)cosx(sinxcosx).(1) 若0,且sin,求f()的值;(2) 求函数f(x)的最小正周期及单调递增区间解:(解法1)(1) 因为0,sin,所以cos.所以f(). (2) 因为f(x)sinxcosxcos2xsin2xsin2xcos2xsin,所以T.由2k2x2k,kZ,得kxk,kZ.所以f(x)的单调递增区间为,kZ.(解法2)f(x)sinxcosxcos2xsin2xsin2xcos2xsin.(1) 因为00,函数f(x)asinxcosxsinxcosx,x的最大值为G(A) (1) 设tsinxcosx,x,求t的取值
9、范围,并把f(x)表示为t的函数m(t);(2) 求G(A)解:(1) tsinxcosxsin. x, x, sin1, 1t,即t的取值范围为1,(3分)(另解: x, tsinxcosx.由2x0,得0sin2x1, 1t) tsinxcosx, sinxcosx,(5分) m(t)atat2ta,t1,a0.(7分)(2) 由二次函数的图象与性质得: 当2(1)时,G(A)m()a; (10分) 当,即0a2(1)时,G(A)m(1).(13分) G(A)(14分)1. 若x,则函数ytan2xtan3x的最大值为_答案:8解析:令tanxt(1,),y,y(t),得t时y取最大值8.
10、2. 已知函数f(x)2cos2xsin2x,求:(1) f的值;(2) f(x)的最大值和最小值解:(1) f2cossin21.(2) f(x)2(2cos2x1)(1cos2x)3cos2x1,xR.因为cosx1,1,所以当cosx1时,f(x)取最大值2;当cosx0时,f(x)取最小值1.3. 已知A为ABC的内角,求ycos2Acos2的取值范围解: ycos2Acos2111cos. A为三角形内角, 0A, 1cos1, ycos2Acos2的取值范围是,4. 设函数f(x)cos2x4tsincos4t3t23t4,xR,其中|t|1,将f(x)的最小值记为g(t)(1)
11、求g(t)的表达式;(2) 讨论g(t)在区间(1,1)内的单调性并求极值解:(1) f(x)cos2x4tsincos4t3t23t4sin2x2tsinx4t3t23t3(sinxt)24t33t3.由于(sinxt)20,|t|1,故当sinxt时,f(x)达到其最小值g(t),即g(t)4t33t3.(2) g(t)12t233(2t1)(2t1),1t1.列表如下:tg(t)00g(t)极大值极小值由此可见,g(t)在区间和上单调增,在区间上单调减,极小值为g2,极大值为g4.人过四十,已然不惑。我们听过别人的歌,也唱过自己的曲,但谁也逃不过岁月的审视,逃不过现实的残酷。如若,把心中
12、的杂念抛开,苟且的日子里,其实也能无比诗意。借一些时光,寻一处宁静,听听花开,看看花落,翻一本爱读的书,悟一段哲人的赠言,原来,日升月落,一切还是那么美。洗不净的浮沉,留给雨天;悟不透的凡事,交给时间。很多时候,人生的遗憾,不是因为没有实现,而是沉于悲伤,错过了打开心结的时机。有人说工作忙、应酬多,哪有那么多的闲情逸致啊?记得鲁迅有句话:“时间就像海绵里的水,只要挤总是有的。”不明花语,却逢花季。一路行走,在渐行渐远的时光中,命运会给你一次次洗牌,但玩牌的始终是你自己。坦白的说,我们遇到困扰,经常会放大自己的苦,虐待自己,然后落个遍体鳞伤,可怜兮兮地向世界宣告:自己没救了!可是,那又怎样?因为
13、,大多数人关心的都是自己。一个人在成年后,最畅快的事,莫过于经过一番努力后,重新认识自己,改变自己。学会了独自、沉默,不轻易诉说。因为,更多的时候,诉说毫无意义。伤心也好,开心也好,过去了,都是曾经。每个人都要追寻活下去的理由,心怀美好,期待美好,这个世界,就没有那么糟糕。或许,你也会有这样的情节,两个人坐在一起,杂乱无章的聊天,突然你感到无聊,你渴望安静,你想一个人咀嚼内心的悲与喜。透过窗格,发着呆,走着神,搜索不到要附和的词。那一刻,你明白了,这世间不缺一起品茗的人,缺的是一个与你同步的灵魂。没有了期望的懂,还是把故事留给自己吧!每个人都是一座孤岛,颠沛流离,浪迹天涯。有时候,你以为找到了
14、知己,其实,你们根本就是两个世界的人。花,只有在凋零的时候,才懂得永恒就是在落红中重生;人,只有在落魄的时候,才明白力量就是在破土中崛起?.因为防备,因为经历,我们学会了掩饰,掩饰自己内心的某些真实,也在真实中,扬起无懈可击的微笑,解决一个又一个的困扰。人生最容易犯的一个错误,就是把逝去的当作最美的风景。所以,不要活在虚妄的世界,不要对曾经存在假设,不要指望别人太多。有些情,只可随缘,不可勉强;有些人,只可浅交,不可入深;有些话,只可会意,不可说穿。或许,有这么一段情,陪你度过漫长冰冷的寒冬;有那样一个人,给你抑郁的天空画上了温暖的春阳。但时光,总会吹散很多往事,把过去一片片分割,移植到不同区域,并贴上标签,印着不同的定义,也定义着自己的人生态度。正如庄子所说:“唯至人乃能游于世不避,顺人而不失己。”外在的世界,只是一个形式,而你内在的世界,才是真正的江山。