资源描述
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除。
课 程 设 计 报 告
学生姓名:
学 号:
学 院:
电气工程学院
班 级:
题 目:
电力系统潮流计算
初 壮
指导教师: 职称: 副教授
指导教师: 李翠萍 职称: 副教授
01月10日
1 潮流计算的目的与意义
潮流计算的目的: 已知电网的接线方式与参数及运行条件, 计算电力系统稳态运行各母线电压、 个支路电流与功率及网损。对于正在运行的电力系统, 经过潮流计算能够判断电网母线电压、 支路电流和功率是否越限, 如果有越限, 就应采取措施, 调整运行方式。对于正在规划的电力系统, 经过潮流计算, 能够为选择电网供电方案和电气设备提供依据。潮流计算还能够为继电保护和自动装置定整计算、 电力系统故障计算和稳定计算等提供原始数据。
潮流计算的意义:
(1)在电网规划阶段,经过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、 小方式下潮流交换控制、 调峰、 调相、 调压的要求。
(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、 基建部门提出改进网架结构,加快基建进度的建议。
(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、 无功调整方案及负荷调整方案,满足线路、 变压器热稳定要求及电压质量要求。
(4)预想事故、 设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。
2 潮流计算数学模型
1.变压器的数学模型:
变压器忽略对地支路等值电路:
2.输电线的数学模型:
π型等值电路:
3 数值方法与计算流程
利用牛顿拉夫逊法进行求解, 用MATLAB软件编程, 能够求解系统潮流分
布根据题目的不同要求对参数进行调整, 经过调节变压器变比和发电厂的电压, 求解出合理的潮流分布, 最后用matpower进行潮流分析, 将两者进行比较。
牛顿—拉夫逊法
1、 牛顿—拉夫逊法概要
首先对一般的牛顿—拉夫逊法作一简单的说明。已知一个变量X函数为:
到此方程时, 由适当的近似值出发, 根据:
重复进行计算, 当满足适当的收敛条件就是上面方程的根。这样的方法就是所谓的牛顿—拉夫逊法。
这一方法还能够做下面的解释, 设第次迭代得到的解语真值之差, 即的误差为时, 则:
把在附近对用泰勒级数展开
上式省略去以后部分
的误差能够近似由上式计算出来。
比较两式, 能够看出牛顿—拉夫逊法的休整量和的误差的一次项相等。
用同样的方法考虑, 给出个变量的个方程:
对其近似解得修正量能够经过解下边的方程来确定:
式中等号右边的矩阵都是对于的值。这一矩阵称为雅可比( JACOBI) 矩阵。按上述得到的修正向量后, 得到如下关系
这比更接近真实值。这一步在收敛到希望的值以前重复进行, 一般要重复计算满足
为预先规定的小正数, 是第n次迭代的近似值。
2、 牛顿法的框图及求解过程
( 1) 用牛顿法计算潮流时, 有以下的步骤:
①给这各节点电压初始值;
②将以上电压初始值代入公式, 求修正方程的常数项向量 ;
③将电压初始值在带入上述公式, 求出修正方程中系数矩阵的各元素。
④解修正方程式;
⑤修正各节点电压, ;
⑥将, 在带入方程式, 求出;
⑦检验是否收敛, 即
如果收敛, 迭代到此结束, 进一步计算各线路潮流和平衡节点功率, 并打印输出结果。如果不收敛, 转回②进行下次迭代计算, 直到收敛为止。
( 2) 程序框图如下:
启动
输入原始数据
形成节点导纳矩阵
分解各节点初始电压的实部和虚部
迭代次数K=0
求PQ节点的,, 求PV节点的,
置节点号i=0
雅克比矩阵是否形成, i>n
求得雅克比矩阵各元素
增大节点号i=i+1
把雅克比矩阵单位化
求解修正方程, 得,
求解最大修正量,
是否收敛
回带各电压新值, K=K+1
计算输出电压大小及相角, 节电功率及支路损耗
停止
否
是
否
是
4 算例分析
4.1 第一问
4.1.1 节点设置及分类
根据系统图可知此系统为两端供电网路, 将母线1, 2设为节点1, 10, 将变电所1、 2、 3、 4的高低压侧分别设为节点2、 3、 4、 5、 6、 7、 8、 9。而且, 将节点1设为平衡节点, 将节点10设为PV节点, 其余节点设为PQ节点。
4.1.2 参数求取
设定基准值, , 因此根据题目原始资料, 计算发电厂、 变压器及线路的参数。
( 1) 运用下列公式计算变压器参数:
( 2) 计算线路参数
( 3) 变电所负荷分别为:
变电所1 =50+j30.987 变电所2 =40+j27.79
变电所3 =50+j30.987 变电所4 =60+j37.18
将参数整理, 见下表:
首端号
末端号
阻抗有名值
阻抗标幺值
电纳有名值
电纳标幺值
1
2
8.5+j20.1
0.0176+j0.0415
j0.000556
j0.2691
1
4
13.6+j32.16
0.0218+j0.0664
j0.0002224
j0.1076
1
6
13.6+j32.16
0.0218+j0.0664
j0.0002224
j0.1076
2
3
1.49+j40.333
0.0031+j0.0833
0
0
4
5
1.78+j53.885
0.037+j0.1113
0
0
4
6
10.2+j24.12
0.0211+j0.0498
j0.0001668
j0.0807
6
7
1.49+j40.333
0.0031+j0.0833
0
0
6
8
6.8+j16.08
0.0140+j0.0332
j0.0004448
j0.2153
8
9
1.78+j53.885
0.0037+j0.1113
0
0
8
10
8.5+j20.1
0.0176+j0.0415
j0.000556
j0.2691
( 4) 计算变压器分接头变比
变压器有5个抽头, 电压调节范围为2*2.5%, 对应的分接头开始时设变压器高压侧接主接头,降压变压器5个分接头时的非标准变比以备调压时选用
对变电所低压母线为35KV时, 非标准变比与10KV时相同。
因此得到的电力系统数学模型如下图所示:
S=40+j24.8
S=50+j31
S=40+j24.8
S=60+j37.2
发电厂一
发电厂二
1:k1
1:k2
1:k3
1:k4
1
10
2
4
8
6
3
5
7
9
8.5+j20.1
13.6+j32.16
1.49+j40.333
1.78+j53.885
1.49+j40.333
1.78+j53.885
10.2+j24.12
13.6+j32.16
6.8+j16.08
8.5+j20.1
j0.0001112
j0.0001112
j 0.000556
4
j0.0000834
j 0.0004448
δ=0
U=231V
P=200MW
U=231V
4.2 第二问
当变电所1,2,3,4负荷分别为: 40MW, 50MW, 40MW, 60MW时,
假设初始的branch, bus, generator矩阵如下图:
得到的结果如下图:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
1.0
0.987
1.011
0.971
0.960
0.974
0.997
0.974
0.973
1.0
14.055
43.75
由上图分析诸多参数都不符合要求, 且网络的无功有功损耗过大。
因此对母线电压, 发电厂发电功率, 变压器变比逐个调节, 得到如下关系:
1, 母线电压1的电压升高会导致以下参数的改变: 2~9母线的电压会提高, 网络总损耗变大。
2, 发电厂2的发电功率减少会导致以下参数的改变: 4~9母线电压会降低, 网络总损耗变小。
3, 变压器变比的减少会导致以下参数的改变: 相应的母线电压提高, 网络总损耗变小。
综上述分析, 经过调试参数得到较为满足条件且网络损耗较小的情况:
得到branch, bus, generator矩阵如下图
结果如下图:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
1.01
0.997
1.022
0.973
0.989
0.967
0.989
0.973
0.998
1.0
5.406
23.5
4.3 第三问
由于要随着负荷变化而使电力系统满足给类要求, 因此我们先初步给定各可控参数:
( 由于发电厂1的母线设定为参考节点, 因此暂且将电厂1的发电量设为0)
发电厂2发电量
发电厂1母线电压
发电厂2母线电压
变压器1变比
变压器2变比
变压器3变比
变压器4变比
60
1.01
1
0.955
0.932
0.955
0.932
结果如下表:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
1.01
0.997
1.022
0.973
0.989
0.967
0.989
0.973
0.998
1.0
5.406
23.5
由此表中所给的可控参数, 我们得出的各电压参数不符合题目要求, 且有无功损耗较高, 因此我们还需要调整各可控参数来获得更小的有无功损耗。
4.4 第四问
经过调试各可控参数我们得到以下结果:
当可调参数的值为下表时:
得到的结果如下表所示:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
四个负荷均增大2%
1.01
0.997
1.023
0.986
1.003
0.991
1.015
0.991
1.017
1.01
3.822
19.09
四个负荷均减小2%
1.01
0.998
1.024
0.987
1.007
0.992
1.018
0.992
1.021
1.01
3.494
17.45
1,4下降2,3上升2%
1.01
0.998
1.024
0.986
1.003
0.991
1.016
0.991
1.02
1.01
3.708
18.23
满足题目要求, 且有无功损耗较小
4.5 第五问
设变电所1, 2, 3, 4的负荷分别为40MW, 50MW, 40MW, 60MW, 此时若不断开任何一条回线且可控参数为第四问得到的较优解, 则运行结果如下:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
未断开回线
1.01
0.997
1.022
0.987
1.005
0.991
1.015
0.991
1.019
1.01
3.671
18.38
断开4,6回线:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
断开4,6回线
1.01
0.998
1.024
0.986
1.003
0.991
1.016
0.991
1.02
1.01
3.708
18.23
断开1,4回线:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
断开1,4回线
1.01
0.997
1.022
0.946
0.959
0.974
0.998
0.982
1.008
1.01
6
24.83
断开1,6回线:
节点1电压
节点2电压
节点3电压
节点4电压
节点5电压
节点6电压
节点7电压
节点8电压
节点9电压
节点10电压
有功功率损耗
无功功率损耗
断开1,6回线
1.01
0.997
1.022
0.977
0.994
0.973
0.996
0.981
1.007
1.01
5.434
23.40
由上述结果分析:
切断4,6回线会使各母线电压与有无功功率损耗变化不大。
切断1,4回线会使4~9母线的电压大幅下降, 而且有无功损耗均得到较大增长。
切断1,6回线会使4~9母线的电压小幅下降, 而且有无功损耗增长。
4.6 第六问
第二问中网损率:
因此:
5 结语
参考文献
1 陈珩.电力系统稳态分析.北京: 中国电力出版社,
2
附录
进一步的思考
展开阅读全文