资源描述
备战2019中考初中数学六大题型专项突破
专题四:圆的综合型问题
【方法指导】
圆的综合型问题往往离不开圆的切线、直径、圆周角,易产生直角三角形、等腰三角形或者等边三角形、形成全等三角形和相似三角形,从而产生综合型较强的问题。
主要理解策略有:理解圆的切线的性质,圆周角定理、垂径定理,会根据这些定理作出辅助线,构造直角三角形,再直角三角形中利用勾股定理、锐角三角形函数解决问题。
【典例解析】
类型一:与切线相关的综合题
【例1】.(2018东营)(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;
(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.
【解答】(1)证明:连接OD,如图所示.
∵OB=OD,
∴∠OBD=∠ODB.
∵CD是⊙O的切线,OD是⊙O的半径,
∴∠ODB+∠BDC=90°.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠OBD+∠CAD=90°,
∴∠CAD=∠BDC.
(2)解:∵∠C=∠C,∠CAD=∠CDB,
∴△CDB∽△CAD,
∴=.
∵BD=AD,
∴=,
∴=,
又∵AC=3,
∴CD=2.
【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.
类型二:与三角函数相关的综合题
【例2】(2018广西贵港)(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
(1)求证:BD是⊙O的切线;
(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.
【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形,得∠A=∠D,由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切线;
(2)如图2,根据三角函数设EC=3x,EB=5x,则BC=4x根据AB=BC=10=4x,得x的值,求得⊙O的半径为,作高线CG,根据等腰三角形三线合一得BG=DG,根据三角函数可得结论.
【解答】(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,
则∠BCE=90°,
∴∠OCE+∠OCB=90°,
∵AB∥CD,AB=CD,
∴四边形ABDC是平行四边形,
∴∠A=∠D,
∵OE=OC,
∴∠E=∠OCE,
∵BC=CD,
∴∠CBD=∠D,
∵∠A=∠E,
∴∠CBD=∠D=∠A=∠OCE,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OBC+∠CBD=90°,
即∠EBD=90°,
∴BD是⊙O的切线;
(2)如图2,∵cos∠BAC=cos∠E=,
设EC=3x,EB=5x,则BC=4x,
∵AB=BC=10=4x,
x=,
∴EB=5x=,
∴⊙O的半径为,
过C作CG⊥BD于G,
∵BC=CD=10,
∴BG=DG,
Rt△CGD中,cos∠D=cos∠BAC=,
∴,
∴DG=6,
∴BD=12.
类型三:与相似三角形相关的综合题
【例3】(2018山东淄博)(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【考点】MR:圆的综合题.
【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
【解答】解:(1)∵DP平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE;
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵DP平分∠APB,
AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC==,
∴cos∠BDF=cos∠APC=,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=AE,
∴四边形ADFE是菱形,
此时点F即为M点,
∵cos∠BAC=cos∠APC=,
∴sin∠BAC=,
∴,
∴DG=,
∴在线段BC上是否存在一点M,使得四边形ADME是菱形
其面积为:DG•AE=2×=
【点评】本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.
【真题热身】
1. (2018贵阳)(10.00分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.
(1)求∠OMP的度数;
(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.
2. (2018山东枣庄)(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.
3. (2018哈尔滨)(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.
(1)如图1,求证:∠CBE=∠DHG;
(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;
(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.
4. (2018浙江衢州)(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.
(1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
5. (2018广西南宁)(10.00分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【参考答案】
1. (2018贵阳)(10.00分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.
(1)求∠OMP的度数;
(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.
【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;
(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.
【解答】解:
(1)∵△OPE的内心为M,
∴∠MOP=∠MOC,∠MPO=∠MPE,
∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),
∵PE⊥OC,即∠PEO=90°,
∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,
(2)如图,∵OP=OC,OM=OM,
而∠MOP=∠MOC,
∴△OPM≌△OCM,
∴∠CMO=∠PMO=135°,
所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);
点M在扇形BOC内时,
过C、M、O三点作⊙O′,连O′C,O′O,
在优弧CO取点D,连DA,DO,
∵∠CMO=135°,
∴∠CDO=180°﹣135°=45°,
∴∠CO′O=90°,而OA=4cm,
∴O′O=OC=×4=2,
∴弧OMC的长==π(cm),
同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,
所以内心M所经过的路径长为2×π=2πcm.
【点评】本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数.同时考查了三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹,属于中考选择题中的压轴题.
2. (2018山东枣庄)(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.
(1)求线段AD的长度;
(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.
【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.
(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.
【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;
连接CD,∵BC为直径,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
∴,∴;
(2)当点E是AC的中点时,ED与⊙O相切;
证明:连接OD,
∵DE是Rt△ADC的中线;
∴ED=EC,
∴∠EDC=∠ECD;
∵OC=OD,
∴∠ODC=∠OCD;
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
∴ED⊥OD,
∴ED与⊙O相切.
【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.
3. (2018哈尔滨)(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.
(1)如图1,求证:∠CBE=∠DHG;
(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;
(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.
【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;
(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;
(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.
【解答】(1)证明:如图1,
∵四边形ABCD是正方形,
∴∠A=∠ABC=90°,
∵∠F=∠A=90°,
∴∠F=∠ABC,
∵DA平分∠EDF,
∴∠ADE=∠ADF,
∵∠ABE=∠ADE,
∴∠ABE=∠ADF,
∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,
∴∠CBE=∠DHG;
(2)如图2,过H作HM⊥KD,垂足为点M,
∵∠F=90°,
∴HF⊥FD,
∵DA平分∠EDF,
∴HM=FH,
∵FH=BP,
∴HN=BP,
∵KH∥BN,
∴∠DKH=∠DLN,
∴∠ELP=∠DLN,
∴∠DKH=∠ELP,
∵∠BED=∠A=90°,
∴∠BEP+∠LEP=90°,
∵EP⊥BN,
∴∠BPE=∠EPL=90°,
∴∠LEP+∠ELP=90°,
∴∠BEP=∠ELP=∠DKH,
∵HM⊥KD,
∴∠KMH=∠BPE=90°,
∴△BEP≌△HKM,
∴BE=HK;
(3)解:如图3,连接BD,
∵3HF=2DF,BP=FH,
∴设HF=2a,DF=3a,
∴BP=FH=2a,
由(2)得:HM=BP,∠HMD=90°,
∵∠F=∠A=90°,
∴tan∠HDM=tan∠FDH,
∴==,
∴DM=3a,
∵四边形ABCD为正方形,
∴AB=AD,
∴∠ABD=∠ADB=45°,
∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,
∴∠DBF=∠BDE,
∵∠BED=∠F,BD=BD,
∴△BED≌△DFB,
∴BE=FD=3a,
过H作HS⊥BD,垂足为S,
∵tan∠ABH=tan∠ADE==,
∴设AB=3m,AH=2m,
∴BD=AB=6m,DH=AD﹣AH=m,
∵sin∠ADB==,
∴HS=m,
∴DS==m,
∴BS=BD﹣DS=5m,
∴tan∠BDE=tan∠DBF==,
∵∠BDE=∠BRE,∴tanBRE==,
∵BP=FH=2a,
∴RP=10a,
在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,
∴△BET≌△HKD,
∴∠BTE=∠KDH,
∴tan∠BTE=tan∠KDH,
∴=,即PT=3a,
∴TR=RP﹣PT=7a,
∵S△BER﹣S△DHK=,
∴BP•ER﹣HM•DK=,
∴BP•(ER﹣DK)=BP•(ER﹣ET)=,
∴×2a×7a=,
解得:a=(负值舍去),
∴BP=1,PR=5,
则BR==.
【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
4. (2018浙江衢州)(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.
(1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;
(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x.在Rt△EHB中,可得(5﹣x)2=x2+()2,解方程即可解决问题;
【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB.
∵EH⊥AB,∴∠EHB=∠CAB.
∵∠EBH=∠CBA,∴△HBE∽△ABC.
(2)连接AF.
∵AB是直径,∴∠AFB=90°.
∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2.
∵=,∴∠EAF=∠EAH.
∵EF⊥AF,EH⊥AB,∴EF=EH.
∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.
【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.
5. (2018广西南宁)(10.00分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
【分析】(1)要证PG与⊙O相切只需证明∠OBG=90°,由∠A与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBO,结合∠DBO+∠OBC=90°即可得证;
(2)求需将BE与OC或OC相等线段放入两三角形中,通过相似求解可得,作OM⊥AC、连接OA,证△BEF∽△OAM得=,由AM=AC、OA=OC知=,结合=即可得;
(3)Rt△DBC中求得BC=8、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=x、BF=8﹣x,继而在Rt△BEF中利用勾股定理求出x的,从而得出答案.
【解答】解:(1)如图,连接OB,则OB=OD,
∴∠BDC=∠DBO,
∵∠BAC=∠BDC、∠BDC=∠GBC,
∴∠GBC=∠BDC,
∵CD是⊙O的切线,
∴∠DBO+∠OBC=90°,
∴∠GBC+∠OBC=90°,
∴∠GBO=90°,
∴PG与⊙O相切;
(2)过点O作OM⊥AC于点M,连接OA,
则∠AOM=∠COM=∠AOC,
∵=,
∴∠ABC=∠AOC,
又∵∠EFB=∠OGA=90°,
∴△BEF∽△OAM,
∴=,
∵AM=AC,OA=OC,
∴=,
又∵=,
∴=2×=2×=;
(3)∵PD=OD,∠PBO=90°,
∴BD=OD=8,
在Rt△DBC中,BC==8,
又∵OD=OB,
∴△DOB是等边三角形,
∴∠DOB=60°,
∵∠DOB=∠OBC+∠OCB,OB=OC,
∴∠OCB=30°,
∴=,=,
∴可设EF=x,则EC=2x、FC=x,
∴BF=8﹣x,
在Rt△BEF中,BE2=EF2+BF2,
∴100=x2+(8﹣x)2,
解得:x=6±,
∵6+>8,舍去,
∴x=6﹣,
∴EC=12﹣2,
∴OE=8﹣(12﹣2)=2﹣4.
【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、圆心角定理、相似三角形的判定与性质、直角三角形的性质等知识点.
展开阅读全文