收藏 分销(赏)

二阶常系数齐次线性方程.pptx

上传人:w****g 文档编号:4595653 上传时间:2024-10-01 格式:PPTX 页数:16 大小:322.58KB 下载积分:8 金币
下载 相关 举报
二阶常系数齐次线性方程.pptx_第1页
第1页 / 共16页
二阶常系数齐次线性方程.pptx_第2页
第2页 / 共16页


点击查看更多>>
资源描述
一、定义一、定义二阶常系数齐次线性方程的标准形式二阶常系数齐次线性方程的标准形式二阶常系数非齐次线性方程的标准形式二阶常系数非齐次线性方程的标准形式二、线性微分方程的解的结构二、线性微分方程的解的结构1.1.二阶齐次方程解的结构二阶齐次方程解的结构:问题问题:例如例如三、二阶常系数齐次线性方程解法三、二阶常系数齐次线性方程解法-特征方程法特征方程法将其代入上方程将其代入上方程,得得故有故有特征方程特征方程特征根特征根 有两个不相等的实根有两个不相等的实根两个线性无关的特解两个线性无关的特解得齐次方程的通解为得齐次方程的通解为特征根为特征根为 有两个相等的实根有两个相等的实根一特解为一特解为得齐次方程的通解为得齐次方程的通解为特征根为特征根为 有一对共轭复根有一对共轭复根重新组合重新组合得齐次方程的通解为得齐次方程的通解为特征根为特征根为定义定义 由常系数齐次线性方程的特征方程的根由常系数齐次线性方程的特征方程的根确定其通解的方法称为确定其通解的方法称为特征方程法特征方程法.解解特征方程为特征方程为解得解得故所求通解为故所求通解为例例1 1解解特征方程为特征方程为解得解得故所求通解为故所求通解为例例2 2思考与练习 求方程的通解.答案答案:通解为通解为通解为作业作业 P358 1(1),(5);2(5);第九节 目录 上页 下页 返回 结束 四、小结四、小结二阶常系数齐次微分方程求通解的一般步骤二阶常系数齐次微分方程求通解的一般步骤:(1)写出相应的特征方程)写出相应的特征方程;(2)求出特征根)求出特征根;(3)根据特征根的不同情况)根据特征根的不同情况,得到相应的通解得到相应的通解.(见下表见下表)思考题思考题求微分方程求微分方程 的通解的通解.思考题解答思考题解答令令则则特征根特征根通解通解练练 习习 题题练习题答案练习题答案
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服