收藏 分销(赏)

OFDM-MATLAB仿真程序.doc

上传人:二*** 文档编号:4591102 上传时间:2024-09-30 格式:DOC 页数:8 大小:53KB 下载积分:5 金币
下载 相关 举报
OFDM-MATLAB仿真程序.doc_第1页
第1页 / 共8页
本文档共8页,全文阅读请下载到手机保存,查看更方便
资源描述
(word完整版)OFDM MATLAB仿真程序 OFDM。m: OFDM Simulator (outer function) clear all; A = [1 1/exp(1) 1/exp(2)]; % power delay profile N = 64; % number of symbols in a single OFDM symbol GI = 16; % guard interval Mt = 1; % number of Tx antennas Mr = 1; % number of Rx antennas sig2 = 1e—3; % noise variance M = 8; % max constellation bit number Mgap = 10.^(1:(1.7/10):2。7); % gap Btot = 100*Mt; % total # bits per OFDM symbol TransmitIter = 50; % # iterations of symbol transmissions for each channel instance ChannelIter = 100; % # iterations of independent identically distributed channel instances GapIter = length(Mgap); load ENC2.mat load ENC4.mat load ENC16.mat load ENC64.mat load ENC256.mat TotEbNo = []; Errors =[]; EbNo = []; for lGap = 1:GapIter lGap gap = Mgap(lGap); totalErrors = 0; for lChan = 1:ChannelIter % create channel [H h_f]=create_channel(Mt, Mr, A, N+GI); % decompose each subchannel in the frequency domain [U S V] = svd_decompose_channel(Mt, Mr, h_f, N); % bitloading [bits_alloc,energy_alloc] = BitLoad(S,Btot,Mt*N,gap,sig2,M); %energy_alloc=energy_alloc/(mean(energy_alloc)); %energy_alloc=ones(1,128); for lTrans = 1:TransmitIter % bits to transmit x = (randn(1,Btot)>0); % modulate x_mod = modulate(x,bits_alloc,energy_alloc, s2,s4,s16,s64,s256); % precode modulated signal x_pre = precode(Mt, x_mod, V, N); % ifft, with cyclic prefix for each antenna ofdm_symbol =[]; for i=1:Mt ofdm_symbol = [ofdm_symbol; ifft_cp_tx_blk(x_pre(i:Mt:Mt*(N-1)+i),N,GI)]; end ofdm_symbol2 = reshape(ofdm_symbol,Mt*(N+GI),1); % channel y = transpose(channel(sig2, Mt, Mr, ofdm_symbol2, H, N+GI)); % fft rec_symbol =[]; for i=1:Mt rec_symbol = [rec_symbol; fft_cp_rx_blk(y(i:Mt:Mt*(N+GI—1)+i),N,GI)]; end rec_symbol2 = reshape(rec_symbol,1,Mt*N); % shape received signal shaped_vals = shape(rec_symbol2, Mr, U, N); % demodulate y_demod = demodulate(shaped_vals, bits_alloc, energy_alloc, S, s2,s4,s16,s64,s256, c2,c4,c16,c64,c256); % comparison totalErrors = totalErrors + sum(xor(y_demod,x)); end EbNo = [EbNo sum(energy_alloc)/Btot/sig2]; end Errors = [Errors totalErrors/Btot/ChannelIter/TransmitIter] TotEbNo = [TotEbNo mean(EbNo)] EbNo = []; end semilogx(TotEbNo, Errors); xlabel(’Eb/No'); ylabel('BER’); title(’SISO link, adaptive rate and power') save SISO_adaptive2。mat Errors EbNo create_channel。m: Generates a Rayleigh fading frequency—selective channel, parametrized by the antenna configuration, the OFDM configuration, and the power-delay profile. function [H, H_f]=create_channel(Mt, Mr, A, N); % function [H, H_f]=create_channel(Mt, Mr, A, N); % % A - vector containing the power-delay profile (real values) % Mt - number of Tx antennas % Mr — number of Rx antennas % N - number of vector symbols to be sent in a single OFDM symbol Tx % ie: N MIMO transmissions in one OFDM symbol % This is for Rayleigh frequency—selective fading, which assumes complex % Gaussian matrix elements with in-phase and quadrature components independent。 % Assume iid matrix channel elements, and further, independent channel taps % define the channel taps H_int = 1/sqrt(2)*(randn(Mr*length(A),Mt) + j*randn(Mr*length(A),Mt)); H_int2=[]; for i = 1:length(A) H_int2 = [H_int2;sqrt(A(i))*H_int((i-1)*Mr+1:i*Mr,:)]; end %h_f = fft(H_int2',64); %%H = H_int2'; H_int2 = [H_int2;zeros((N-length(A))*Mr,Mt)]; H_f = zeros(Mr,Mt*(N—16)); for i = 1:Mt for j = 1:Mr h_f = fft(H_int2(j:Mr:(N—16—1)*Mr+j,i)); for k = 1:(N—16) H_f(j,i+(k—1)*Mt) = h_f(k); end end end H=[H_int2]; for i = 1:N—1 H=[H,[zeros(Mr*i,Mt);H_int2(1:(N-i)*Mr,:)]]; end svd_decompose_channel。m: Since full channel knowledge is assumed, transmission is across parallel singular value modes。 This function decomposes the channel into these modes. function [U, S, V] = svd_decompose_channel(Mt, Mr, h_f, N); % [U S V] = svd_decompose_channel(Mt, Mr, h_f, N); % % Function decomposes the channel at each subcarrier into its SVD components % % Mt — # Tx antennas % Mr - # Rx antennas % h_f — MIMO impulse response - Mr rows, Mt*L columns, where L is the number of % channel taps % N — # subcarriers U = []; S = []; V = []; for i = 1:N [Utmp Stmp Vtmp] = svd(h_f(:,(i—1)*Mt+1:i*Mt)); U=[U Utmp]; V=[V Vtmp]; S=[S Stmp]; end S = sum(S,1); BitLoad.m: Apply the bit-loading algorithm to achieve the desired bit and energy allocation for the current channel instance. function [bits_alloc,energy_alloc] = BitLoad(subchan_gains,total_bits,num_subc,gap,noise,M) % Bit Loading Algorithm % —-—----————-----————- % % Inputs : % subchan_gains : SubCarrier Gains % total_bits : Total Number of bits % num_subc : Number of Subcarriers % gap : Gap of the system % noise : Noise Power % M : Max Constellation Size % Outputs: % bits_alloc : Bits allocation for each subchannel % power_alloc : Total Power allocation % -----—-—-——————-----—--—-—-——-————---——----—-—---———-————--—--— % Compute SNR's for each channel SNR = ComputeSNR(subchan_gains,noise,gap); % This function just initializes the system with a particular bit % allocation and energy allocation using Chow's Algorithm。 This is % further efficientize using Campello’s Algorithm [bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M); % Form the Energy Increment Table based on the present channel % gains for all the subchannels in order to be used by Campello % Algorithm energytable = EnergyTableInit(SNR,M); % Efficientize the algorithm using the Campello's algorithm [bits_alloc,energy_alloc] = campello_algo(bits_alloc,energy_alloc,energytable,total_bits,num_subc,M); ComputeSNR.m: Given the subcarrier gains, this simple function generates the SNR values of each channel (each singular value on each tone is a separate channel)。 function SNR = ComputeSNR(subcar_gains,noise,gap) SNR = abs((subcar_gains.^2)。/(noise*gap)); chow_algo.m: Apply Chow's algorithm to generate a particular bit and energy allocation. % Chow's Algorithm % -——--—-—-——-—-—- % This is based on the paper by Chow et al titled % % A Practical Discrete Multitone Transceiver Loading Algorithm % for Data Transmission over Spectrally Shaped Channels。IEEE Trans % on Communications. Vol。 43, No 2/3/4, pp。 773—775, Feb/Mar/Apr 1995 function [bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M) for i = 1:num_subc % Assuming each of the subchannels has a flat fading, we get initial estimate % of the bits for each subchannel tempbits = log2(1 + abs(SNR(i))); % bits per two dimension. roundtempbits = round(tempbits); % round the bits if (roundtempbits 〉 8) % Limit them between 2 and 15 roundtempbits = 8; end if (mod(roundtempbits,2)== 1 & roundtempbits ~= 1) roundtempbits = roundtempbits —1; end if roundtempbits 〉 0 % Calculate the Energy required for the subchannel energy_alloc(i) = (2^roundtempbits—1)/SNR(i) ; else energy_alloc(i) = 0; end bits_alloc(i) = roundtempbits; % Update the BitSubChan end % end of function EnergyTableInit。m: Given the SNR values, form a table of energy increments for each channel。 function energytable = EnergyTableInit(SNR,M); % Inputs: % subcar_gains : Subcarrier Gains % M : max Constellation Size % Gap : Gap of the system % Noise : Noise Power % Outputs: % energytable : Energytable % % Based on the Subcarrier Gains, we calculate the energy % increment required by each subcarrier for transmitting % 1,2 ,4 ,6,8 bits。 % Energy = 2^(i-1)/subcar_gains; % —----——-—-——-—-—-——-——-—-———-------—-——--—---—-—-——-—- %subcar_gains = (subcar_gains。^2)/(Gap*Noise); energytable = abs((1./SNR)’*(2.^([1:M+1]-1))); % Increase the energy value for constellation size of more than M to % a very high value so that it is not assigned. energytable(:,M+1) = Inf*ones(size(energytable(:,M+1))); for i = 3:2:M energytable(:,i) = (energytable(:,i) +energytable(:,i+1))/2; energytable(:,i+1) = energytable(:,i); end %energytable = [ones(1,size(energytable,1))’ energytable]; campello_algo。m: Apply Campello’s algorithm to converge to the optimal bit and energy allocation for the given channel conditions. % campello_algo.m % ---——---—-———- % This function is used by Campello's algorithm to allocate bits and energy for % each subchannel optimally。 function [bits_alloc, energy_alloc] = campello_algo(bits_alloc,energy_alloc,energytable,total_bits,num_subc,M) bt = sum(bits_alloc); % We can't transmit more than M*(Number of subchannel) bits if total_bits > M*num_subc total_bits = M*num_subc; end while (bt ~= total_bits) if (bt > total_bits) max_val = 0; max_ind = ceil(rand(1)*num_subc); for i = 1:num_subc if bits_alloc(i) ~= 0 temp = energytable(i,bits_alloc(i)) ; else temp = 0; end if (temp > max_val) max_val = temp; max_ind = i; end end if (bits_alloc(max_ind) > 0) bits_alloc(max_ind) = bits_alloc(max_ind) —1; energy_alloc(max_ind) = energy_alloc(max_ind) - max_val; bt = bt-1; end else min_val = Inf; min_ind = ceil(rand(1)*num_subc); for i = 1:num_subc if bits_alloc(i) ~=0 & bits_alloc(i) 〈9 temp = energytable(i,bits_alloc(i) + 1); else temp = Inf; end if (temp < min_val) min_val = temp; min_ind = i; end end if (bits_alloc(min_ind) 〈 8) bits_alloc(min_ind) = bits_alloc(min_ind) +1; if (min_val==inf) min_val = energytable(min_ind,bits_alloc(min_ind)); end energy_alloc(min_ind) = energy_alloc(min_ind) +min_val; bt = bt+1; end end end for i = 1:length(bits_alloc) if (mod(bits_alloc(i),2) == 1 & bits_alloc(i) ~=1) [bits_alloc,energy_alloc] = ResolvetheLastBit(bits_alloc,energy_alloc,i,energytable,num_subc); end end ResolvetheLastBit.m: An optimal bit—loading of the last bit requires a unique optimization. function [bits_alloc, energy_alloc] = ResolvetheLastBit(bits_alloc,energy_alloc,index,energytable,num_subc) max_val = 0; for i = 1:num_subc if (i ~= index & bits_alloc(i) == 1) if bits_alloc(i) ~= 0 temp = energytable(i,bits_alloc(i)) ; end if (temp > max_val) max_val = temp; max_ind = i; end end end min_val = Inf; for i = 1:num_subc if (i~= index & bits_alloc(i) == 1) if bits_alloc(i) ~=0 temp = energytable(i,bits_alloc(i) + 1); end if (temp 〈 min_val) min_val = temp; min_ind = i; end end end if (min_val 〈 max_val) bits_alloc(min_ind) = bits_alloc(min_ind) + 1; bits_alloc(index) = bits_alloc(index) - 1; energy_alloc(index) = energy_alloc(index) — min_val; else bits_alloc(max_ind) = bits_alloc(max_ind) - 1; bits_alloc(index) = bits_alloc(index) + 1; energy_alloc(index) = energy_alloc(index) + max_val; end
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服