资源描述
(word完整版)OFDM MATLAB仿真程序
OFDM。m: OFDM Simulator (outer function)
clear all;
A = [1 1/exp(1) 1/exp(2)]; % power delay profile
N = 64; % number of symbols in a single OFDM symbol
GI = 16; % guard interval
Mt = 1; % number of Tx antennas
Mr = 1; % number of Rx antennas
sig2 = 1e—3; % noise variance
M = 8; % max constellation bit number
Mgap = 10.^(1:(1.7/10):2。7); % gap
Btot = 100*Mt; % total # bits per OFDM symbol
TransmitIter = 50; % # iterations of symbol transmissions for each channel instance
ChannelIter = 100; % # iterations of independent identically distributed channel instances
GapIter = length(Mgap);
load ENC2.mat
load ENC4.mat
load ENC16.mat
load ENC64.mat
load ENC256.mat
TotEbNo = [];
Errors =[];
EbNo = [];
for lGap = 1:GapIter
lGap
gap = Mgap(lGap);
totalErrors = 0;
for lChan = 1:ChannelIter
% create channel
[H h_f]=create_channel(Mt, Mr, A, N+GI);
% decompose each subchannel in the frequency domain
[U S V] = svd_decompose_channel(Mt, Mr, h_f, N);
% bitloading
[bits_alloc,energy_alloc] = BitLoad(S,Btot,Mt*N,gap,sig2,M);
%energy_alloc=energy_alloc/(mean(energy_alloc));
%energy_alloc=ones(1,128);
for lTrans = 1:TransmitIter
% bits to transmit
x = (randn(1,Btot)>0);
% modulate
x_mod = modulate(x,bits_alloc,energy_alloc, s2,s4,s16,s64,s256);
% precode modulated signal
x_pre = precode(Mt, x_mod, V, N);
% ifft, with cyclic prefix for each antenna
ofdm_symbol =[];
for i=1:Mt
ofdm_symbol = [ofdm_symbol; ifft_cp_tx_blk(x_pre(i:Mt:Mt*(N-1)+i),N,GI)];
end
ofdm_symbol2 = reshape(ofdm_symbol,Mt*(N+GI),1);
% channel
y = transpose(channel(sig2, Mt, Mr, ofdm_symbol2, H, N+GI));
% fft
rec_symbol =[];
for i=1:Mt
rec_symbol = [rec_symbol; fft_cp_rx_blk(y(i:Mt:Mt*(N+GI—1)+i),N,GI)];
end
rec_symbol2 = reshape(rec_symbol,1,Mt*N);
% shape received signal
shaped_vals = shape(rec_symbol2, Mr, U, N);
% demodulate
y_demod = demodulate(shaped_vals, bits_alloc, energy_alloc, S, s2,s4,s16,s64,s256, c2,c4,c16,c64,c256);
% comparison
totalErrors = totalErrors + sum(xor(y_demod,x));
end
EbNo = [EbNo sum(energy_alloc)/Btot/sig2];
end
Errors = [Errors totalErrors/Btot/ChannelIter/TransmitIter]
TotEbNo = [TotEbNo mean(EbNo)]
EbNo = [];
end
semilogx(TotEbNo, Errors);
xlabel(’Eb/No');
ylabel('BER’);
title(’SISO link, adaptive rate and power')
save SISO_adaptive2。mat Errors EbNo
create_channel。m: Generates a Rayleigh fading frequency—selective channel, parametrized by the antenna configuration, the OFDM configuration, and the power-delay profile.
function [H, H_f]=create_channel(Mt, Mr, A, N);
% function [H, H_f]=create_channel(Mt, Mr, A, N);
%
% A - vector containing the power-delay profile (real values)
% Mt - number of Tx antennas
% Mr — number of Rx antennas
% N - number of vector symbols to be sent in a single OFDM symbol Tx
% ie: N MIMO transmissions in one OFDM symbol
% This is for Rayleigh frequency—selective fading, which assumes complex
% Gaussian matrix elements with in-phase and quadrature components independent。
% Assume iid matrix channel elements, and further, independent channel taps
% define the channel taps
H_int = 1/sqrt(2)*(randn(Mr*length(A),Mt) + j*randn(Mr*length(A),Mt));
H_int2=[];
for i = 1:length(A)
H_int2 = [H_int2;sqrt(A(i))*H_int((i-1)*Mr+1:i*Mr,:)];
end
%h_f = fft(H_int2',64);
%%H = H_int2';
H_int2 = [H_int2;zeros((N-length(A))*Mr,Mt)];
H_f = zeros(Mr,Mt*(N—16));
for i = 1:Mt
for j = 1:Mr
h_f = fft(H_int2(j:Mr:(N—16—1)*Mr+j,i));
for k = 1:(N—16)
H_f(j,i+(k—1)*Mt) = h_f(k);
end
end
end
H=[H_int2];
for i = 1:N—1
H=[H,[zeros(Mr*i,Mt);H_int2(1:(N-i)*Mr,:)]];
end
svd_decompose_channel。m: Since full channel knowledge is assumed, transmission is across parallel singular value modes。 This function decomposes the channel into these modes.
function [U, S, V] = svd_decompose_channel(Mt, Mr, h_f, N);
% [U S V] = svd_decompose_channel(Mt, Mr, h_f, N);
%
% Function decomposes the channel at each subcarrier into its SVD components
%
% Mt — # Tx antennas
% Mr - # Rx antennas
% h_f — MIMO impulse response - Mr rows, Mt*L columns, where L is the number of
% channel taps
% N — # subcarriers
U = [];
S = [];
V = [];
for i = 1:N
[Utmp Stmp Vtmp] = svd(h_f(:,(i—1)*Mt+1:i*Mt));
U=[U Utmp];
V=[V Vtmp];
S=[S Stmp];
end
S = sum(S,1);
BitLoad.m: Apply the bit-loading algorithm to achieve the desired bit and energy allocation for the current channel instance.
function [bits_alloc,energy_alloc] = BitLoad(subchan_gains,total_bits,num_subc,gap,noise,M)
% Bit Loading Algorithm
% —-—----————-----————-
%
% Inputs :
% subchan_gains : SubCarrier Gains
% total_bits : Total Number of bits
% num_subc : Number of Subcarriers
% gap : Gap of the system
% noise : Noise Power
% M : Max Constellation Size
% Outputs:
% bits_alloc : Bits allocation for each subchannel
% power_alloc : Total Power allocation
% -----—-—-——————-----—--—-—-——-————---——----—-—---———-————--—--—
% Compute SNR's for each channel
SNR = ComputeSNR(subchan_gains,noise,gap);
% This function just initializes the system with a particular bit
% allocation and energy allocation using Chow's Algorithm。 This is
% further efficientize using Campello’s Algorithm
[bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M);
% Form the Energy Increment Table based on the present channel
% gains for all the subchannels in order to be used by Campello
% Algorithm
energytable = EnergyTableInit(SNR,M);
% Efficientize the algorithm using the Campello's algorithm
[bits_alloc,energy_alloc] = campello_algo(bits_alloc,energy_alloc,energytable,total_bits,num_subc,M);
ComputeSNR.m: Given the subcarrier gains, this simple function generates the SNR values of each channel (each singular value on each tone is a separate channel)。
function SNR = ComputeSNR(subcar_gains,noise,gap)
SNR = abs((subcar_gains.^2)。/(noise*gap));
chow_algo.m: Apply Chow's algorithm to generate a particular bit and energy allocation.
% Chow's Algorithm
% -——--—-—-——-—-—-
% This is based on the paper by Chow et al titled
%
% A Practical Discrete Multitone Transceiver Loading Algorithm
% for Data Transmission over Spectrally Shaped Channels。IEEE Trans
% on Communications. Vol。 43, No 2/3/4, pp。 773—775, Feb/Mar/Apr 1995
function [bits_alloc, energy_alloc] = chow_algo(SNR,num_subc,M)
for i = 1:num_subc
% Assuming each of the subchannels has a flat fading, we get initial estimate
% of the bits for each subchannel
tempbits = log2(1 + abs(SNR(i))); % bits per two dimension.
roundtempbits = round(tempbits); % round the bits
if (roundtempbits 〉 8) % Limit them between 2 and 15
roundtempbits = 8;
end
if (mod(roundtempbits,2)== 1 & roundtempbits ~= 1)
roundtempbits = roundtempbits —1;
end
if roundtempbits 〉 0 % Calculate the Energy required for the subchannel
energy_alloc(i) = (2^roundtempbits—1)/SNR(i) ;
else
energy_alloc(i) = 0;
end
bits_alloc(i) = roundtempbits; % Update the BitSubChan
end
% end of function
EnergyTableInit。m: Given the SNR values, form a table of energy increments for each channel。
function energytable = EnergyTableInit(SNR,M);
% Inputs:
% subcar_gains : Subcarrier Gains
% M : max Constellation Size
% Gap : Gap of the system
% Noise : Noise Power
% Outputs:
% energytable : Energytable
%
% Based on the Subcarrier Gains, we calculate the energy
% increment required by each subcarrier for transmitting
% 1,2 ,4 ,6,8 bits。
% Energy = 2^(i-1)/subcar_gains;
% —----——-—-——-—-—-——-——-—-———-------—-——--—---—-—-——-—-
%subcar_gains = (subcar_gains。^2)/(Gap*Noise);
energytable = abs((1./SNR)’*(2.^([1:M+1]-1)));
% Increase the energy value for constellation size of more than M to
% a very high value so that it is not assigned.
energytable(:,M+1) = Inf*ones(size(energytable(:,M+1)));
for i = 3:2:M
energytable(:,i) = (energytable(:,i) +energytable(:,i+1))/2;
energytable(:,i+1) = energytable(:,i);
end
%energytable = [ones(1,size(energytable,1))’ energytable];
campello_algo。m: Apply Campello’s algorithm to converge to the optimal bit and energy allocation for the given channel conditions.
% campello_algo.m
% ---——---—-———-
% This function is used by Campello's algorithm to allocate bits and energy for
% each subchannel optimally。
function [bits_alloc, energy_alloc] = campello_algo(bits_alloc,energy_alloc,energytable,total_bits,num_subc,M)
bt = sum(bits_alloc);
% We can't transmit more than M*(Number of subchannel) bits
if total_bits > M*num_subc
total_bits = M*num_subc;
end
while (bt ~= total_bits)
if (bt > total_bits)
max_val = 0;
max_ind = ceil(rand(1)*num_subc);
for i = 1:num_subc
if bits_alloc(i) ~= 0
temp = energytable(i,bits_alloc(i)) ;
else
temp = 0;
end
if (temp > max_val)
max_val = temp;
max_ind = i;
end
end
if (bits_alloc(max_ind) > 0)
bits_alloc(max_ind) = bits_alloc(max_ind) —1;
energy_alloc(max_ind) = energy_alloc(max_ind) - max_val;
bt = bt-1;
end
else
min_val = Inf;
min_ind = ceil(rand(1)*num_subc);
for i = 1:num_subc
if bits_alloc(i) ~=0 & bits_alloc(i) 〈9
temp = energytable(i,bits_alloc(i) + 1);
else
temp = Inf;
end
if (temp < min_val)
min_val = temp;
min_ind = i;
end
end
if (bits_alloc(min_ind) 〈 8)
bits_alloc(min_ind) = bits_alloc(min_ind) +1;
if (min_val==inf)
min_val = energytable(min_ind,bits_alloc(min_ind));
end
energy_alloc(min_ind) = energy_alloc(min_ind) +min_val;
bt = bt+1;
end
end
end
for i = 1:length(bits_alloc)
if (mod(bits_alloc(i),2) == 1 & bits_alloc(i) ~=1)
[bits_alloc,energy_alloc] = ResolvetheLastBit(bits_alloc,energy_alloc,i,energytable,num_subc);
end
end
ResolvetheLastBit.m: An optimal bit—loading of the last bit requires a unique optimization.
function [bits_alloc, energy_alloc] = ResolvetheLastBit(bits_alloc,energy_alloc,index,energytable,num_subc)
max_val = 0;
for i = 1:num_subc
if (i ~= index & bits_alloc(i) == 1)
if bits_alloc(i) ~= 0
temp = energytable(i,bits_alloc(i)) ;
end
if (temp > max_val)
max_val = temp;
max_ind = i;
end
end
end
min_val = Inf;
for i = 1:num_subc
if (i~= index & bits_alloc(i) == 1)
if bits_alloc(i) ~=0
temp = energytable(i,bits_alloc(i) + 1);
end
if (temp 〈 min_val)
min_val = temp;
min_ind = i;
end
end
end
if (min_val 〈 max_val)
bits_alloc(min_ind) = bits_alloc(min_ind) + 1;
bits_alloc(index) = bits_alloc(index) - 1;
energy_alloc(index) = energy_alloc(index) — min_val;
else
bits_alloc(max_ind) = bits_alloc(max_ind) - 1;
bits_alloc(index) = bits_alloc(index) + 1;
energy_alloc(index) = energy_alloc(index) + max_val;
end
展开阅读全文