收藏 分销(赏)

全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc

上传人:人****来 文档编号:4579506 上传时间:2024-09-30 格式:DOC 页数:50 大小:830.51KB
下载 相关 举报
全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc_第1页
第1页 / 共50页
全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc_第2页
第2页 / 共50页
全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc_第3页
第3页 / 共50页
全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc_第4页
第4页 / 共50页
全国各地2014年中考数学真题分类解析汇编-11函数与一次函数.doc_第5页
第5页 / 共50页
点击查看更多>>
资源描述

1、函数与一次函数一、选择题1. ( 2014安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按ABC的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A BCD考点:动点问题的函数图象分析:点P在AB上时,点D到AP的距离为AD的长度,点P在BC上时,根据同角的余角相等求出APB=PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解解答:解:点P在AB上时,0x3,点D到AP的距离为AD的长度,是定值4;点P在BC上时,3x5,APB+BAP=90,PAD+BAP=90,APB=PAD,又B=DEA=90

2、,ABPDEA,=,即=,y=,纵观各选项,只有B选项图形符合故选B点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论2. ( 2014福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m0)的图象可能是()ABCD考点:反比例函数的图象;一次函数的图象分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案解答:解:A、由函数y=mx+m的图象可知m0,由函数y=的图象可知m0,故本选项正确;B、由函数y=mx+m的图象可知m0,由函数y=的图象可知m0,相矛盾,故本选项错误

3、;C、由函数y=mx+m的图象y随x的增大而减小,则m0,而该直线与y轴交于正半轴,则m0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m0,而该直线与y轴交于负半轴,则m0,相矛盾,故本选项错误;故选:A点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题3. (2014广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象分析:先根据二次函数的图象得到a

4、0,b0,c0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置解答:解:抛物线开口向上,a0,抛物线的对称轴为直线x=0,b0,抛物线与y轴的交点在x轴下方,c0,一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限故选B点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a0)的图象为抛物线,当a0,抛物线开口向上;当a0,抛物线开口向下对称轴为直线x=;与y轴的交点坐标为(0,c)也考查了一次函数图象和反比例函数的图象4. ( 2014广西贺州,第14题3分)已知P1(1,y1),P2(2,y2)是正比例函数y=

5、x的图象上的两点,则y1y2(填“”或“”或“=”)考点:一次函数图象上点的坐标特征分析:直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2)的值,再比较出其大小即可解答:解:P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,y1=,y2=2=,y1y2故答案为:点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键5. ( 2014广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止

6、设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()ABCD考点:动点问题的函数图象分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状解答:解:t1时,两个三角形重叠面积为小三角形的面积,y=1=,当1x2时,重叠三角形的边长为2x,高为,y=(2x)=xx+,当x2时两个三角形重叠面积为小三角形的面积为0,故选:B点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体6(2014年四川资阳,第5题3分)一次函数y=2x+1的图象不经过下列哪个象限()A第一象限B第二象限C第三象限D第四象限考点:一次函数图象与系

7、数的关系分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可解答:解:解析式y=2x+1中,k=20,b=10,图象过一、二、四象限,图象不经过第三象限故选C点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k0)中,当k0时,函数图象经过二、四象限,当b0时,函数图象与y轴相交于正半轴7(2014温州,第7题4分)一次函数y=2x+4的图象与y轴交点的坐标是()A(0,4)B(0,4)C(2,0)D(2,0)考点:一次函数图象上点的坐标特征分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标解答:解:令x=0,得y=20+4=4,则函数与y轴的交点坐标是

8、(0,4)故选B点评:本题考查了一次函数图象上点的坐标特征,是一个基础题8.(2014年广东汕尾,第8题4分)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()ABCD分析:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程增加变快据此即可选择解:由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快故选:C点评:本题主要考查了函数的图象本题的关键是分析汽车行驶的过程9.(2014年广

9、东汕尾,第10题4分)已知直线y=kx+b,若k+b=5,kb=6,那么该直线不经过()A第一象限B第二象限C第三象限D第四象限分析:首先根据k+b=5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可解:k+b=5,kb=6,k0,b0,直线y=kx+b经过二、三、四象限,即不经过第一象限故选A点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号10.(2014毕节地区,第14题3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2xax+4的解集为( )AxBx3CxDx3考点:一次函数与一元一次不等式分

10、析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,点A的坐标为(,3),由图可知,不等式2xax+4的解集为x故选A点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论11.(2014邵阳,第10题3分)已知点M(1,a)和点N(2,b)是一次函数y=2x+1图象上的两点,则a与b的大小关系是( )AabBa=bCabD以上都不对 考点:一次函数图象上点的坐标特征分析:根据一次函数的增减性,k0,y随x的增大而减小解答解答:解:k=20,y随x的增大而减小,12,ab故选A点评:本题考

11、查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便12(2014四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k0)在同一坐标系中的图象大致是()ABCD考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限解答:解:若k0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;

12、若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限13.(2014德州,第8题3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家其中x表示时间,y表示张强离家的距离根据图象提供的信息,以下四个说法错误的是()A体育场离张强家2.5千米B张强在体育场锻炼了15分钟C体育场离早餐店4千米D张强从早餐店回家的平均速度是3千米/小时考点:函数的图象分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间

13、由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.51.5千米;平均速度=总路程总时间解答:解:A、由函数图象可知,体育场离张强家2.5千米,故此选项正确;B由图象可得出张强在体育场锻炼4515=30(分钟),故此选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.51.5=1(千米),故此选项错误;D、张强从早餐店回家所用时间为10065=35分钟,距离为1.5km,张强从早餐店回家的平均速度1.5=(千米/时),故此选项正确故选:C点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键点评:本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活

14、中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图也考查了等腰直角三角形的性质14.(2014济宁,第4题3分)函数y=中的自变量x的取值范围是()Ax0Bx1Cx0Dx0且x1考点:函数自变量的取值范围分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围解答:解:根据题意得:x0且x+10,解得x0,故选:A点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负二.填空题1(

15、2014年四川资阳,第13题3分)函数y=1+中自变量x的取值范围是考点:函数自变量的取值范围分析:根据被开方数大于等于0列式计算即可得解解答:解:由题意得,x+30,解得x3故答案为:x3点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负2(2014年云南省,第11题3分)写出一个图象经过一,三象限的正比例函数y=kx(k0)的解析式(关系式) 考点:正比例函数的性质专题:开放型分析:根据正比例函数y=kx的图象经过一,三象限,可得k0,写一个符

16、合条件的数即可解答:解:正比例函数y=kx的图象经过一,三象限,k0,取k=2可得函数关系式y=2x故答案为:y=2x点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线当k0时,图象经过一、三象限,y随x的增大而增大;当k0时,图象经过二、四象限,y随x的增大而减小3(2014舟山,第15题4分)过点(1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1)考点:两条直线相交或平行问题分析:依据与直线平行设出直线AB的解析式y=x+b;代入点(1,7)即可求得b,然后求出与x轴的

17、交点横坐标,列举才符合条件的x的取值,依次代入即可解答:解:过点(1,7)的一条直线与直线平行,设直线AB为y=x+b;把(1,7)代入y=x+b;得7=+b,解得:b=,直线AB的解析式为y=x+,令y=0,得:0=x+,解得:x=,0x的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、1;在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1)故答案为(1,4),(3,1)点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键4.(2014武汉,第14题3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑

18、的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为 2200 米考点:一次函数的应用分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,这次越野跑的全程为:1600+3002=2200米故答案为:2200点评:本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键5.(2014武汉,第18题6分)已知直线y=2xb经过点(1,1),求关于x的不等式2xb0的解集考点:一次函数与一元一次不等式分析:把点(1,1

19、)代入直线y=2xb得到b的值,再解不等式解答:解:把点(1,1)代入直线y=2xb得,1=2b,解得,b=3函数解析式为y=2x3解2x30得,x点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式6.(2014孝感,第13题3分)函数的自变量x的取值范围为x1考点:函数自变量的取值范围;分式有意义的条件专题:计算题分析:根据分式的意义,分母不能为0,据此求解解答:解:根据题意,得x10,解得x1故答案为x1点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次

20、根式时,被开方数为非负数7.(2014孝感,第11题3分)如图,直线y=x+m与y=nx+4n(n0)的交点的横坐标为2,则关于x的不等式x+mnx+4n0的整数解为()A1B5C4D3考点:一次函数与一元一次不等式分析:满足不等式x+mnx+4n0就是直线y=x+m位于直线y=nx+4n的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可解答:解:直线y=x+m与y=nx+4n(n0)的交点的横坐标为2,关于x的不等式x+mnx+4n0的解集为x2,关于x的不等式x+mnx+4n0的整数解为3,故选D点评:本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握8(2014

21、四川自贡,第15题4分)一次函数y=kx+b,当1x4时,3y6,则的值是2或7考点:一次函数的性质分析:由于k的符号不能确定,故应分k0和k0两种进行解答解答:解:当k0时,此函数是增函数,当1x4时,3y6,当x=1时,y=3;当x=4时,y=6,解得,=2;当k0时,此函数是减函数,当1x4时,3y6,当x=1时,y=6;当x=4时,y=3,解得,=7故答案为:2或7点评:本题考查的是一次函数的性质,在解答此题时要注意分类讨论,不要漏解9(2014浙江金华,第13题4分)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟

22、步行 米【答案】80.【解析】10. (2014益阳,第12题,4分)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟(第1题图)考点:函数的图象分析:他步行回家的平均速度=总路程总时间,据此解答即可解答:解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:160020=80(米/分钟),故答案为:80点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决11. (2014株洲,第15题,3分)直线y=k1x+b1(k1

23、0)与y=k2x+b2(k20)相交于点(2,0),且两直线与y轴围城的三角形面积为4,那么b1b2等于4考点:两条直线相交或平行问题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得解答:解:如图,直线y=k1x+b1(k10)与y轴交于B点,则OB=b1,直线y=k2x+b2(k20)与y轴交于C,则OC=b2,ABC的面积为4,OAOB+=4,+=4,解得:b1b2=4故答案为4点评:本题考查了一次函数与坐标轴的交点以及数形结合思想的应用解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合12. (2014泰州,第10题,3

24、分)将一次函数y=3x1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2考点:一次函数图象与几何变换分析:根据“上加下减”的平移规律解答即可解答:解:将一次函数y=3x1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x1+3,即y=3x+2故答案为y=3x+2点评:此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化解析式变化的规律是:左加右减,上加下减三.解答题1. ( 2014安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处

25、理费5200元从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨餐厨垃圾吨数+建

26、筑垃圾处理费16元/吨建筑垃圾吨数=总费用,列方程(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,解得x60a=100x+30y=100x+30(240x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小

27、,最小值=7060+7200=11400(元)答:2014年该企业最少需要支付这两种垃圾处理费共11400元点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;2. ( 2014福建泉州,第24题9分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)

28、写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案解答:解:(1)乙的速度v2=1203=40(米/分),故答案为:40;(2)v1=1.5v2=1.540=60(米/分),6060=1(分钟),a=1,d1=;(3)d2=40t,当0t1时,d2d110,即60t+6040t10

29、,解得0;当0时,两遥控车的信号不会产生相互干扰;当1t3时,d1d210,即40t(60t60)10,当1时,两遥控车的信号不会产生相互干扰综上所述:当0或1t时,两遥控车的信号不会产生相互干扰点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0t1时,d2d110;当1t3时,d1d210,分类讨论是解题关键3. ( 2014广东,第23题9分)如图,已知A(4,),B(1,2)是一次函数y=kx+b与反比例函数y=(m0,m0)图象的两个交点,ACx轴于C,BDy轴于D(1)根据图象直接回答:在第二象限内,当x取何值时,一次

30、函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若PCA和PDB面积相等,求点P坐标考点:反比例函数与一次函数的交点问题分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案解答:解:(1)由图象得一次函数图象在上的部分,4x1,当4x1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(4,),(1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(1,2),m=12=2;(3)连接PC、P

31、D,如图,设P(x,x+)由PCA和PDB面积相等得(x+4)=|1|(2x),x=,y=x+=,P点坐标是(,)点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式4. ( 2014珠海,第16题7分)为庆祝商都正式营业,商都推出了两种购物方案方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点:一次函数的应用分

32、析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,55865592所以选择方案一更省钱点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题5. ( 2014珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E(1)求反

33、比例函数及直线BD的解析式;(2)求点E的坐标考点:反比例函数与一次函数的交点问题分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,A(1,0),D(1,0),B(1,2)反比例函数y=的图象过点B,m=2,反比例函数解析式为y=,设一次函数解析式为y=kx+b,y=kx+b的图象过B、D点,解得直线BD的解析式y=x1;(2)直线BD与反比例函数y=的图象交于点E,解得B(1,2),E(2,

34、1)点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标6(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k0)的图象过点P(,0),且与反比例函数y=(m0)的图象相交于点A(2,1)和点B(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案解答:解:(1)一次函数y=kx+b(

35、k0)的图象过点P(,0)和A(2,1),解得,一次函数的解析式为y=2x3,反比例函数y=(m0)的图象过点A(2,1),解得m=2,反比例函数的解析式为y=;(2),解得,或,B(,4)由图象可知,当2x0或x时,一次函数的函数值小于反比例函数的函数值点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键7(2014年天津市,第23题10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折()根据题意,填写下表:购买种子的数量/kg1.523.54付款金额/元7.5101618()设购买种子数量为xkg,付款金额

36、为y元,求y关于x的函数解析式;()若小张一次购买该种子花费了30元,求他购买种子的数量考点:一次函数的应用;一元一次方程的应用分析:(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值解答:解:()10,8;()根据题意得,当0x2时,种子的价格为5元/千克,y=5x,当x2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,y=52+4(x2)=4x+2,y关于x的函数解析式为y=;()302,一次性购买种子超过2千克,4x+2=30解得x=7,答:他购买种子的数量是7千克点评:本题考查了一次函数的应

37、用,分类讨论是解题关键8(2014年天津市,第25题10分)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P()若点M的坐标为(1,1),当点F的坐标为(1,1)时,如图,求点P的坐标;当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式()若点M(1,m),点F(1,t),其中t0,过点P作PQl于点Q,当OQ=PQ时,试用含t的式子表示m考点:一次函数综合题分析:()利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;由已知可设点F的坐标是(

38、1,t)求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x2(2+t)则tx=(2+t)x2(2+t),整理后即可得到y关于x的函数关系式y=x22x;()同(),易求P(2,2t)则由PQl于点Q,得点Q(1,2t),则OQ2=1+t2(2)2,PQ2=(1)2,所以1+t2(2)2=(1)2,化简得到:t(t2m)(t22mt1)=0,通过解该方程可以求得m与t的关系式解答:解:()点O(0,0),F(1,1),直线OF的解析式为y=x设直线EA的解析式为:y=kx+b(k0)、点E和点F关于点M(1,1)对称,E(1,3)又A(2,0),点E在直线EA上,解得

39、 ,直线EA的解析式为:y=3x6点P是直线OF与直线EA的交点,则,解得 ,点P的坐标是(3,3)由已知可设点F的坐标是(1,t)直线OF的解析式为y=tx设直线EA的解析式为y=cx+dy(c、d是常数,且c0)由点E和点F关于点M(1,1)对称,得点E(1,2t)又点A、E在直线EA上,解得 ,直线EA的解析式为:y=(2+t)x2(2+t)点P为直线OF与直线EA的交点,tx=(2+t)x2(2+t),即t=x2则有 y=tx=(x2)x=x22x;()由()可得,直线OF的解析式为y=tx直线EA的解析式为y=(t2m)x2(t2m)点P为直线OF与直线EA的交点,tx=(t2m)x

40、2(t2m),化简,得 x=2有 y=tx=2t点P的坐标为(2,2t)PQl于点Q,得点Q(1,2t),OQ2=1+t2(2)2,PQ2=(1)2,OQ=PQ,1+t2(2)2=(1)2,化简,得 t(t2m)(t22mt1)=0又t0,t2m=0或t22mt1=0,解得 m=或m=则m=或m=即为所求点评:本题考查了一次函数的综合题型涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题9(2014新疆,第22题11分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地两车同

41、时出发,匀速行驶图2是客车、货车离C站飞路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象(1)填空:A,B两地相距420千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?考点:一次函数的应用分析:(1)由题意可知:B、C之间的距离为60千米,A、C之间的距离为360千米,所以A,B两地相距360+60=420千米;(2)根据货车两小时到达C站,求得货车的速度,进一步求得到达A站的时间,进一步设y2与行驶时间x之间的函数关系式可以设x小时到达C站,列出关系式,代入点求得函数解析式即可;(3)两函数的图象相交,说明两辆车相遇,求得y1的函数解析式,与(2)中的函数解析式联立方程,解决问题解答:解:(1)填空:A,B两地相距420千米;(2)由图可知货车的速度为602=30千米/小时,货车到达A地一共需要2+36030=14小时,设y2=kx+b,代入点(2,0)、(14,360)得,解得,所以y2=30x60;(3)设y1=mx+n,代入点(6,0)、(0,360)得解得,所以y1=60x+360由y1=y2得30x60=60x+360解得x=答:客、货两车经过小时相遇点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题10

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服