收藏 分销(赏)

MATLAB实验傅里叶分析.doc

上传人:天**** 文档编号:4562544 上传时间:2024-09-30 格式:DOC 页数:16 大小:204.50KB
下载 相关 举报
MATLAB实验傅里叶分析.doc_第1页
第1页 / 共16页
MATLAB实验傅里叶分析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述
MATLAB实验傅里叶分析 实验七  傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB提供了专门的函数fft、ifft、fft2(即2维快速傅里叶变换)、ifft2以及fftshift用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft、ifft以及fftshift函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x(t)是给定的时域上的一个波形,则其傅里叶变换为 显然X( f )代表频域上的一种分布(波形),一般来说X( f )是复数。而傅里叶逆变换定义为: 因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 x(t) d 脉冲序列 x(t)d (t-nT) t t t 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使之符合电脑计算的特征。另外,当把傅里叶变换应用于实验数据的分析和处理时,由于处理的对象具有离散性,因此也需要对傅里叶变换进行离散化处理。而要想将傅里叶变换离散化,首先要对时域上的波形x(t)进行离散化处理。采用一个时域上的采样脉冲序列: d (t-nT ), n = 0, 1, 2, …, N-1; 可以实现上述目的,如图所示。其中N为采样点数,T为采样周期;fs = 1/T是采样频率。注意采样时,采样频率fs必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形的傅里叶变换进行离散处理。与上述做法类似,采用频域上的d脉冲序列: d ( f-n/T0), n = 0, 1, 2, …, N-1;T0= NT 为总采样时间 可以实现傅里叶变换的离散化,如下图示。不难看出,离散后的傅里叶变换其频率间隔(频率轴上离散点的间隔,即频域分辨率) f f f d (f-n/T0) X( f ) 混迭 因此要增加分辨率须增加采样点数目N。频域上每个离散点对应的频率为: 显然n = 0的点对应于直流成分。 经过以上离散化处理之后,连续积分的傅里叶变换(1)式转变为如下离散形式: 其中tk= kT(k=0,1,2,…,N-1)代表采样点时刻。X( fn)一般是复数,因此离散傅里叶变换(DFT)后变成一个N点(采样点数)的复数序列。X( fn)绝对值代表振幅,其幅角代表相位,因此由(5)式可以给出DFT的振幅频谱和相位频谱。(5)式通常又简写成如下形式: 其中 ,x是采样点数据,它是一个N个点的向量,DFT的结果X是N个点的复数向量。(5)式或(6)式就是对傅里叶变换进行数值计算的基础。 一般采样点数N越大,DFT的结果越接近真实的情况,但是当N较大时,(6)式的计算量很大,因为使用计算机求解(6)式时,总共要执行N2次复数乘法和N×(N-1)次复数加法。所以直接用DFT算法(即(5)式)进行谱分析和信号的实时处理是不切实际的。为了减轻计算的压力,人们提出了一种所谓快速傅里叶变换(FFT)的思想: 取N =2m,首先将N个点的采样数据分成两个N/2点的序列: (偶数序列) (奇数序列) 这样处理的好处是可以把(6)式分解为两个N/2点的DFT,使计算量降下来。接下来再将N/2点的序列x1仿照上述做法进一步分裂成2个N/4点的序列x3和x4,另一序列x2亦做如此处理,分裂成2个N/4点的序列x5和x6。这样两个N/2点的序列分成了更短的4个N/4点的序列,依次类推,最后的结果是将一个N点的序列x裂成了N个点的单点序列:x0, x1, x2, …, xN-1。这样做可以将DFT的运算效率提高1-2个数量级,为数字信号处理技术应用于各种信号的实时处理创造了条件,从而推动数字处理技术的发展。由此可见FFT的思想实质是不断地把长序列的DFT计算分解成若干短序列的DFT,并利用旋转因子(即WN )的周期性和对称性来减少DFT的运算次数。所以FFT就是DFT的快速算法。 有关FFT算法的详细介绍和理论推导参见有关的书籍,这里不做进一步介绍。 2. FFT的MATLAB实现 为了实现快速傅里叶变换,MATLAB提供了fft、ifft、fft2、ifft2以及fftshift函数,分别用于一维和二维离散傅里叶变换(DFT)及其逆变换。借助这些函数可以完成很多信号处理任务。考虑到信号处理包含的领域很广泛,这里只介绍一维傅里叶变换及其逆变换函数。 (1) fft函数 该函数使用了快速算法来实现时域信号的离散傅里叶变换。常用的格式: Y= fft (x) Y= fft (x, m) Y 返回值(复数),返回m点的DFT序列,即(6)式左边的X; m 计算时使用的数据点数(样本数); x 时域信号x(t)在采样点tk处的值,即(6)式右边的x;若实际采样点数目为N(m和N都须是2的幂次),则x为N个元素(即长度N)的向量;若向量x的长度小于m,那么计算时将自动在x序列的后面补0;若x的长度大于m,则x自动截断,使之长度为m。对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数(m)最好与原信号含有的数据点数(即输入的样本数N)相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。 两点说明: ① 关于FFT振幅频谱和相位频谱的计算 由于傅里叶变换的结果一般是复数,所以 l 对fft的结果取绝对值abs()可以得到振幅,即 Amplitude = abs(Y) 需要注意的是这样得到的幅值实际并非真正的信号振幅,因其值与FFT使用的数据点数N有关,但不影响分析结果,在IFFT(逆变换)时已经做了处理。要得到真实的振幅值的大小,只要将上述结果除以N/2即可。 l 对fft的结果使用函数angle()可以得到相位的结果。但是使用angle函数计算复数 的相角时,系统规定一、二象限的角为0~p;三、四象限的角为-p~0。因此若一个角度本来应该从0变到2p,但计算得到的结果却是0~p,再由-p~0,在p处发生跳变,跳变幅度为2p,这就叫相位的卷绕。这种相位的卷绕会使得相频图不连续,呈现锯齿状,为了平滑相频图,通常要再使用unwrap()函数进行相位的解卷绕。因此FFT的相位频谱图应该如下实现 Phase = unwrap(angle(Y)) ② FFT的振幅频谱具有对称性 如下图所示。 … … fn: f 轴 对称轴 (Nyquist频率) 负频部分® ¬ 正频部分 FFT: 0 注意:频率轴上最后一个点的频率等于采样频率, 实际上不存在。 为频率轴上的频率点。 特别: 为Nyquist频率,整个FFT频谱关于此频率对称, 右边实际上是负频 因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内(共N/2+1个频率点)的幅频特性。 (2) fftshift函数 其作用是将零频点移到频谱的中间(即Nyquist频率处),使用格式: Y=fftshift(X) X是向量,该命令将零频点移动到频谱X的中间,并交换频谱X的左右两半。将零频点放到频谱的中间对于观察傅立叶变换是有用的。 例1:对时域信号进行频谱分析。 fs=100; % 采样频率>2倍的信号频率 N=256; % 采样点数目(=2的幂次) n=0:N-1; % 构造采样点序列 t=n/fs; % 得到采样时间序列,t=nT=n/fs x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); % 产生时域信号的样本值,向量 Y=fft(x,N); % N点的DFT计算 mag=abs(Y); % FFT的振幅 phase=unwrap(angle(Y)); % FFT的相位 % 1. 以下绘制物理频谱图(即正频部分) fn=(0:N/2)*fs/N; % 频率轴上的离散频率点,起始于0频(对应直流成分),终 %于Nyquist频率fs/2,共N/2+1个频率点 subplot(2,2,1)% 将图形窗口分割为2×2的子窗口,并指定第1个子窗口为绘图区 plot(fn,mag(1:N/2+1)) % 取出前N/2+1个振幅作图,即正频率分量 xlabel('频率/Hz');ylabel('振 幅'); title('图1: 物理(正频)幅频图');grid on % 加网格线 % 2. 以下绘制全频率的幅频图 fn1=(0:N-1)*fs/N; subplot(2,2,2) %指定第2个子窗口为绘图区 plot(fn1,mag); xlabel('频率/Hz');ylabel('振 幅'); title('图2: 全频率的幅频图'); grid on %3. 以下绘制正频部分的相频图 subplot(2,2,3) %指定第3个子窗口为绘图区 plot(fn,phase(1:N/2+1)); xlabel('频率/Hz');ylabel('相 位');title('图3: 相 频 图');grid %4. 以下移动零频点 Y1=fftshift(Y); % fftshift移动频率零点,并将Y的左右两部分交换 mag1=abs(Y1); % 重新计算振幅 fn2=fn1-fs/2; % 零点移动到fs/2处,故需重新标记频率轴 subplot(2,2,4); %指定第4个子窗口为绘图区,最终4幅图绘制在一张图上了 plot(fn2,mag1); xlabel('频率/Hz');ylabel('振 幅'); title('图4: fftshift后的幅频图');grid 运行结果如下: 图说明:1是物理谱图(正频部分),从中看到,该信号包含两个频率15Hz和40Hz。由于使用的采样频率fs=100Hz,所以Nyquist频率为50Hz,在图2中明显能看到整个频谱图关于Nyquist频率对称,不过Nyquist频率右边的谱图实际上是负频部分,没有意义。图4是fftshift之后的幅频图,由于它是图2结果的左右交换,因此图2右边变成了负频。另外,图中的振幅不是真实的信号振幅,从信号x(t)的表达式我们知道15Hz和40Hz这两种频率成分的振幅分别是0.5和2。要得到真实的振幅,只需要将程序中的mag除以N/2即可。 (3) ifft函数 执行离散傅里叶变换的逆变换,格式 x = ifft (Y) 或者 x = ifft (Y, m) Y是FFT的输出结果,返回值x是时域上的结果,m仍然是计算使用的数据点数。在上例中若程序末尾使用: xx=ifft(Y, N),则得到采样时刻点上,信号x(t)的样本值。 三、实验内容及要求 实验项目: 给定采样频率51.2Hz及采样点数N=512,计算矩形函数 的振幅频谱,并与理论计算结果对比。 A. 显然该信号x(t)是无限长的非周期信号,因此做FFT计算时必须先将信号x(t)截断为有限长度。令采样频率为fs,采样点数目N,则截断长度是: T0 = N / fs (即总的采样时间) 因此截断长度和采样点数目N成正比。对于无限长的非周期信号,截断长度应尽可能的大,以接近实际信号,避免结果失真;如果是周期信号,则要求截断长度为信号周期的整数倍,以免出现频谱的“泄漏”。 若给定采样点数N=512,则时间采样序列可用向量t表示:t=(0:N-1)/fs,矩形函数x(t)的样本值可以使用MATLAB提供的符号函数sign(请使用help sign命令查询sign函数的定义)来表示:x=0.5-0.5*sign(t-1),然后使用fft命令即可获得DFT计算结果。 B. 根据(1)式不难算出上述信号x(t)的傅里叶变换的理论结果(精确值): 其振幅为: 然后再根据(8)式即可绘出x(t)的振幅频谱,将其与fft计算结果比较:改变N以改变截断长度观察FFT结果与(8)式结果的差异。 要求: ⑴ 认真阅读例1提供的程序; ⑵ 参考例1中的程序,编写出本实验项目的fft计算程序,绘制出零点移动到Nyquist频率处的振幅频谱1;对图形进行标注(如参考图所示)2;使用(8)式绘制矩形函数x(t)精确的振幅频谱图3;使用subplot命令将2幅图在一张图上显示4;频率区间[-5,5]观察比较得到的两个振幅频谱5;改变采样数N,再比较两幅图的差异,分析采样点数对fft计算结果精确度的影响6。 附实验结果参考图: 边瓣 主瓣
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服