1、第一节第一节光分析基础光分析基础一、一、光分析法及其特点光分析法及其特点 optical analysis and its characteristics 光光分分析析法法:基基于于电电磁磁辐辐射射与与待待测测物物质质相相互互作作用用后后所所产产生生的辐射信号与物质组成及结构关系所建立起来的分析方法;的辐射信号与物质组成及结构关系所建立起来的分析方法;电磁辐射范围:电磁辐射范围:射线无线电波所有范围;射线无线电波所有范围;相相互互作作用用方方式式:发发射射、吸吸收收、反反射射、折折射射、散散射射、干干涉涉、衍射等;衍射等;光光分分析析法法在在定定性性、定定量量和和研研究究物物质质组组成成、结结
2、构构表表征征、表表面分析等方面具有其他方法不可取代的地位;面分析等方面具有其他方法不可取代的地位;三个基本过程:三个基本过程:(1 1)能能源源(电电磁磁辐辐射射:射射线线无无线线电电波波)提提供供能能量量(辐辐射射能能-跃跃迁迁:电子跃迁电子跃迁-紫外,振动跃迁紫外,振动跃迁-红外,转动跃迁红外,转动跃迁-微波)微波);(2 2)能能量量与与被被测测物物之之间间的的相相互互作作用用(发发射射、吸吸收收、反反射射、折折射射、散射、干涉、衍射等)散射、干涉、衍射等);(3 3)产生信号产生信号(辐射信号)(辐射信号)。基本特点:基本特点:(1 1)所有光分析法均包含三个基本过程;)所有光分析法均
3、包含三个基本过程;(2 2)选择性测量,)选择性测量,不涉及混合物分离不涉及混合物分离(不同于色谱分析);(不同于色谱分析);(3 3)涉及大量光学元器件。)涉及大量光学元器件。二、电磁辐射的基本性质二、电磁辐射的基本性质 basic properties of electromagnetic radiation 1 1、电磁辐射具有波动性和微粒性、电磁辐射具有波动性和微粒性电磁辐射:以接近光速(真空中为光速)通过空间传播电磁辐射:以接近光速(真空中为光速)通过空间传播能量的电磁波;能量的电磁波;c=/E=h=h c/c:光速;:光速;:波长;:波长;:频率;:频率;:波数:波数;E:能量;:
4、能量;h:普朗克常数:普朗克常数电磁辐射具有波动性和微粒性(波粒二象性):电磁辐射具有波动性和微粒性(波粒二象性):(1)光的波动性:光的波动性:光光的的传传播播如如光光的的折折射射、衍衍射射、偏偏振振和和干干扰扰等等现现象象可可以以用用光的波动性来解释。光的波动性来解释。描描述述波波动动性性的的重重要要参参数数是是波波长长、频频率率 和和光光速速C,它它们的关系是们的关系是:C 波动性波长频率c光速2.9979108ms-12.99791010cms-1 (2 2)光的微粒性光的微粒性 还有一些光学现象,如光电效应、光的发射和吸收还有一些光学现象,如光电效应、光的发射和吸收等,只能用光的微粒
5、性才能满意地解释。光是由带有能等,只能用光的微粒性才能满意地解释。光是由带有能量的微粒组成的,这种微粒称为光子或光量子。光子的量的微粒组成的,这种微粒称为光子或光量子。光子的能量与它的频率成正比,或与波长成反比,而与光的强能量与它的频率成正比,或与波长成反比,而与光的强度无关。度无关。粒子性普朗克常数h 6.626210-34Js波数()单位:cm-1,物理意义:1cm的间距内有多少个光波电磁波谱:电磁辐射按波长顺序排列,称电磁波谱:电磁辐射按波长顺序排列,称。表 电磁波谱区及常用光学分析方法光谱区域光谱区域波波长长光光学学分分析析方方法法 射线射线5*10-3 0.14nm 射线光谱法射线光
6、谱法X射线射线10-3nm10nmX射线光谱法射线光谱法光学区光学区10nm1000nm原子发射光谱法、原子发射光谱法、原子吸收光谱法、原子吸收光谱法、原子荧光光谱法、原子荧光光谱法、紫外吸收光谱法、紫外吸收光谱法、可见吸收光谱法、分子荧光光谱法、可见吸收光谱法、分子荧光光谱法、红外吸收光谱法红外吸收光谱法微微波波0.1mm1m微波光谱法微波光谱法无线电波无线电波1m以上以上核磁共振波谱法核磁共振波谱法3 3、辐射能的特性、辐射能的特性(光与物质的作用):光与物质的作用):(1)(1)吸收吸收 M+hvM*(2)(2)发射发射 M*M+hv(3)(3)散射(散射(ScatteringScatt
7、ering)光通过不均匀介质时部分光偏离原方向传播的现光通过不均匀介质时部分光偏离原方向传播的现象。象。丁铎尔散射和分子散射丁铎尔散射和分子散射.(4)(4)折射(折射(RefractionRefraction)折射是光在两种介质中的传播速度不同;折射是光在两种介质中的传播速度不同;(5)(5)反射反射 (ReflectionReflection)光通过具有不同折射率的两种介质的界面时会光通过具有不同折射率的两种介质的界面时会产生反射。产生反射。(6)(6)干涉(干涉(Coherent interferenceCoherent interference)频率相同的两列波叠加,使某些区频率相同的
8、两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域互域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域互相间隔,此现象叫干涉。相间隔,此现象叫干涉。(7)(7)衍射(衍射(DiffractionDiffraction)光绕过物体而弯曲地向其后面传播的现象;光绕过物体而弯曲地向其后面传播的现象;(8)(8)偏振(偏振(PolarizationPolarization)只在一个固定方向有振动的光称为平面偏振只在一个固定方向有振动的光称为平面偏振光。光。三、物质和光的作用三、物质和光的作用 当一束光照射到物体上时当一束光照射到物体上时,除透过部分光与分子没
9、有作除透过部分光与分子没有作用外用外,物质将吸收和散射一部分光。物质将吸收和散射一部分光。1.1.物质吸收光的过程物质吸收光的过程分子吸收光能分子吸收光能,吸收时间极短吸收时间极短,只有只有10-15sec.,电子由基电子由基态跃迁到较高能态的激发态。态跃迁到较高能态的激发态。X+hvX*激发态的寿命很短激发态的寿命很短,约为约为10-8sec.,然后以发生光物理和然后以发生光物理和光化学反应后光化学反应后,以下列形式回到基态。以下列形式回到基态。2 2、物质吸收和发光的过程示意图、物质吸收和发光的过程示意图 第二激发态第二激发态 第一激发态第一激发态h=E=E 三重态三重态 振动能级振动能级
10、 基态基态 吸收吸收 无辐射退激无辐射退激 荧光荧光 磷光磷光 共振发射共振发射 不发光,发不发光,发不发光,发不发光,发热热热热发光,波长最发光,波长最发光,波长最发光,波长最短,不发热短,不发热短,不发热短,不发热发光,波长发光,波长发光,波长发光,波长最长,发热最长,发热最长,发热最长,发热发光,波长发光,波长发光,波长发光,波长变长,发热变长,发热变长,发热变长,发热3 3、物质散射光的过程示意图、物质散射光的过程示意图 第二激发态第二激发态 第一激发态第一激发态h=E=E 三重态三重态 振动能级振动能级 基态基态 A B CA B C A A 斯托克斯散射斯托克斯散射 B B。瑞利散
11、射。瑞利散射 C C反斯托克斯散射反斯托克斯散射 无散射无散射无散射无散射散射波散射波散射波散射波长变短长变短长变短长变短散射波散射波散射波散射波长变长长变长长变长长变长三、光分析法分类三、光分析法分类 type of optical analysis 光分析法光分析法可分为光谱法光谱法和非光谱法非光谱法两大类。光谱法光谱法是以光的吸收,发射和拉曼散射等作用而建立的光谱方法。这类方法比较多,是主要的光分析方法。光谱法 光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。)吸收光谱法:它是利用物质吸收光后所产生的吸收光谱
12、来进行分析的方法。)发光光谱法:物质中的粒子用一定的能量(如光、电、热等)激发到高能级后,当跃迁回低能级时,便产生出特征的发射光谱,利用此发射光谱进行的分析的方法)散射光谱法:利用物质对光的散射来进行分析的方法。如果按照电磁辐射和物质相互作用的结果,可如果按照电磁辐射和物质相互作用的结果,可以产生发射、吸收和联合散射三种类型的光谱以产生发射、吸收和联合散射三种类型的光谱。射线光谱法射线光谱法 X X射线荧光分析法射线荧光分析法 MssbauerMssbauer(莫斯鲍尔)谱法(莫斯鲍尔)谱法 原子发射光谱分析法原子发射光谱分析法 1、发射光谱、发射光谱原子荧光分析法原子荧光分析法 2 2、吸收
13、光谱、吸收光谱 紫外紫外-可见分光光度法可见分光光度法 分子荧光分析法分子荧光分析法 原子吸收光谱法原子吸收光谱法 分子磷光分析法分子磷光分析法 红外光谱法红外光谱法 化学发光分析法化学发光分析法 核雌共振波谱法核雌共振波谱法3 3、RamanRaman散射散射-Raman-Raman光谱法光谱法:频率为频率为 o o的单色光照射到透明物质上,物的单色光照射到透明物质上,物质分子会发生散射现象。如果这种散射是光子与物质分子发生能量交换的,质分子会发生散射现象。如果这种散射是光子与物质分子发生能量交换的,即不仅光子的运动方向发生变化,它的能量也发生变化,则称为即不仅光子的运动方向发生变化,它的能
14、量也发生变化,则称为RanmnRanmn散散射。射。光谱法光谱法可分为原子光谱法原子光谱法和分子光谱法分子光谱法。原子光谱原子光谱(线性光谱):(线性光谱):是由原子外层或内层电子是由原子外层或内层电子能级的能级的变化产生的,变化产生的,由若干条强度不同的谱线和暗区相间而成由若干条强度不同的谱线和暗区相间而成的光谱。的光谱。最常见的三种最常见的三种基于原子外层电子跃迁的原子吸收光谱(基于原子外层电子跃迁的原子吸收光谱(AAS););原子发射光谱(原子发射光谱(AES)、原子荧光光谱()、原子荧光光谱(AFS););基于原子内层电子跃迁的基于原子内层电子跃迁的X射线荧光光谱(射线荧光光谱(XFS
15、););基于原子核与射线作用的穆斯堡谱;基于原子核与射线作用的穆斯堡谱;分子光谱分子光谱(带状光谱):是是由由分子中电子能级、振动和转分子中电子能级、振动和转动能级动能级的变化产生的,的变化产生的,由几个光带和暗区相间而成的光由几个光带和暗区相间而成的光谱。谱。紫外光谱法(紫外光谱法(UV);红外光谱法();红外光谱法(IR);分子荧光光谱法);分子荧光光谱法(MFS););分子磷光光谱法(分子磷光光谱法(MPS););核磁共振与顺磁核磁共振与顺磁共振波谱(共振波谱(NMR););连续光谱:在一定范围内。各种波长的光都有,连续不连续光谱:在一定范围内。各种波长的光都有,连续不断,无明显的谱线和
16、谱带。断,无明显的谱线和谱带。线光谱线光谱带光谱带光谱E总=E电子+E振动+E转动非光谱法非光谱法:不涉及能级跃迁,物质与辐射作用时,仅改不涉及能级跃迁,物质与辐射作用时,仅改变传播方向等物理性质;变传播方向等物理性质;如偏振法、干涉法、旋光法等;如偏振法、干涉法、旋光法等;光谱法与非光谱法的区别:光谱法与非光谱法的区别:光谱法:内部能级发生变化光谱法:内部能级发生变化原子吸收原子吸收/发射光谱法:原子外层电子能级跃迁发射光谱法:原子外层电子能级跃迁 分子吸收分子吸收/发射光谱法:分子外层电子能级跃迁发射光谱法:分子外层电子能级跃迁 非光谱法:内部能级不发生变化,仅测定电磁辐射性质改变非光谱法
17、:内部能级不发生变化,仅测定电磁辐射性质改变光学分析法的分类光学分析法的分类光谱方法:光谱方法:测量发射或吸收光谱测量发射或吸收光谱的波长和强度的波长和强度非光谱方法非光谱方法定性、定量定性、定量物质内部特定的能级跃迁物质内部特定的能级跃迁特征光谱的波长:特征光谱的波长:定性、结构分析定性、结构分析光谱的强度:光谱的强度:定量分析定量分析原子光谱原子光谱分子光谱分子光谱折光、旋光、衍射、比浊法折光、旋光、衍射、比浊法原子发射光谱原子发射光谱原子吸收光谱原子吸收光谱红外光谱红外光谱紫外光谱紫外光谱光分析法光谱分析法非光谱分析法原子光谱分析法分子光谱分析法原原子子吸吸收收光光谱谱原原子子发发射射光
18、光谱谱原原子子荧荧光光光光谱谱X射射线线荧荧光光光光谱谱折射法圆二色性法X射线衍射法干涉法旋光法紫紫外外光光谱谱法法红红外外光光谱谱法法分分子子荧荧光光光光谱谱法法分分子子磷磷光光光光谱谱法法核核磁磁共共振振波波谱谱法法光谱分析法吸收光谱法发射光谱法原子光谱法分子光谱法原子发射原子吸收原子荧光X射线荧光原子吸收紫外可见红外可见核磁共振紫外可见红外可见分子荧光分子磷光核磁共振化学发光原子发射原子荧光分子荧光分子磷光X射线荧光化学发光四、各种光分析法简介四、各种光分析法简介 a brief introduction of optical analysis 1.1.原子发射光谱分析法原子发射光谱分析
19、法以火焰、电弧、等离子炬等作为光源,以火焰、电弧、等离子炬等作为光源,使气态原子的外使气态原子的外层电子受激发射出特征光谱进行分析层电子受激发射出特征光谱进行分析的方法。的方法。2.2.原子吸收光谱分析法原子吸收光谱分析法利用特殊光源发射出待测元素的共振线,并将溶液中利用特殊光源发射出待测元素的共振线,并将溶液中离离子转变成气态原子后,测定气态原子对共振线吸收而进行的子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法定量分析方法。3.3.原子荧光分析法原子荧光分析法 气态原子吸收特征波长的辐射后,外层电子从基态或低气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,
20、在能态跃迁到高能态,在10-8s后跃回基态或低能态时,发射出后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与吸收波长相同或不同的荧光辐射,在与光源成与光源成90度度的方向的方向上,测定荧光强度进行定量分析的方法。上,测定荧光强度进行定量分析的方法。4.4.分子荧光分析法分子荧光分析法某些物质被紫外光照射激发后,在回到基态的过程中发某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。分析的方法。6.6.X X射线荧光分析法射线荧光分析法 原子受高能辐射,其内层电子发生能
21、级跃迁,发射出特征原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射线(射线(X射线荧光),测定其强度可进行定量分析。射线荧光),测定其强度可进行定量分析。7.7.化学发光分析法化学发光分析法利用化学反应提供能量,使待测分子被激发,返回基态利用化学反应提供能量,使待测分子被激发,返回基态时发出一定波长的光,依据其强度与待测物浓度之间的线性时发出一定波长的光,依据其强度与待测物浓度之间的线性关系进行定量分析的方法。关系进行定量分析的方法。5.5.分子磷光分析法分子磷光分析法处于第一最低单重激发态分子以无辐射弛豫处于第一最低单重激发态分子以无辐射弛豫(辐射能量辐射能量)方方式进入第一三重激发态
22、,再跃迁返回基态发出磷光。测定磷式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。光强度进行定量分析的方法。利用溶液中分子吸收紫外和可见光产生跃迁所记录的吸利用溶液中分子吸收紫外和可见光产生跃迁所记录的吸收光谱图,可进行化合物结构分析,根据最大吸收波长强度收光谱图,可进行化合物结构分析,根据最大吸收波长强度变化可进行定性定量分析。变化可进行定性定量分析。9.9.红外吸收光谱分析法红外吸收光谱分析法利用分子中基团吸收红外光产生的振动利用分子中基团吸收红外光产生的振动-转动吸收光谱进转动吸收光谱进行定量和有机化合物结构分析的方法。行定量和有机化合物结构分析的方法。10.
23、10.核磁共振波谱分析法核磁共振波谱分析法在外磁场的作用下,核自旋磁矩与磁场相互作用而裂分在外磁场的作用下,核自旋磁矩与磁场相互作用而裂分为能量不同的核磁能级,吸收射频辐射后产生能级跃迁,根为能量不同的核磁能级,吸收射频辐射后产生能级跃迁,根据吸收光谱可进行有机化合物结构分析据吸收光谱可进行有机化合物结构分析。8.紫外吸收光谱分析法紫外吸收光谱分析法11.11.顺磁共振波谱分析法顺磁共振波谱分析法在外磁场的作用下,电子的自旋磁矩与磁场相互作用而裂在外磁场的作用下,电子的自旋磁矩与磁场相互作用而裂分为磁量子数不同的磁能级,吸收微波辐射后产生能级跃迁,分为磁量子数不同的磁能级,吸收微波辐射后产生能
24、级跃迁,根据吸收光谱可进行结构分析根据吸收光谱可进行结构分析。12.12.旋光法旋光法 溶液的旋光性与分子的非对称结构有密切关系,可利用旋溶液的旋光性与分子的非对称结构有密切关系,可利用旋光法研究某些天然产物及配合物的立体化学问题,旋光计测定光法研究某些天然产物及配合物的立体化学问题,旋光计测定糖的含量。糖的含量。13.13.衍射法衍射法X射线衍射:研究晶体结构,不同晶体具有不同衍射图。射线衍射:研究晶体结构,不同晶体具有不同衍射图。电子衍射:电子衍射是透射电子显微镜的基础,研究物质电子衍射:电子衍射是透射电子显微镜的基础,研究物质的内部组织结构。的内部组织结构。五、光分析方法的进展五、光分析
25、方法的进展 development of optical analysis 1.1.采用新光源,提高灵敏度采用新光源,提高灵敏度级联光源:电感耦合等离子体级联光源:电感耦合等离子体-辉光放电;激光蒸发辉光放电;激光蒸发-微微波等离子体波等离子体 2.2.联用技术联用技术电感耦合高频等离子体(电感耦合高频等离子体(ICP)质谱质谱激光质谱:灵敏度达激光质谱:灵敏度达10-20g 3.3.新材料新材料光导纤维传导,损耗少;抗干扰能力强;光导纤维传导,损耗少;抗干扰能力强;4.交叉电致发光分析;光导纤维电化学传感器电致发光分析;光导纤维电化学传感器 5.5.检测器的发展检测器的发展电荷耦合阵列检测器
26、光谱范围宽、量子效率高、线性范围电荷耦合阵列检测器光谱范围宽、量子效率高、线性范围宽、多道同时数据采集、三维谱图,将取代光电倍增管;宽、多道同时数据采集、三维谱图,将取代光电倍增管;光二极激光器代替空心阴极灯,使原子吸收可进行多元素光二极激光器代替空心阴极灯,使原子吸收可进行多元素同时测定;同时测定;六、光学分析法的特点六、光学分析法的特点(1)灵敏度高。灵敏度高。(2)使用试样量少。使用试样量少。(3)光光学学分分析析法法适适用用的的被被测测组组分分含含量量范范围围很很广广泛泛。适用于微量、痕量甚至超痕量组分的分析。适用于微量、痕量甚至超痕量组分的分析。(4)分析速度快。分析速度快。(5)多
27、元素同时测定。多元素同时测定。七、光学分析法的应用七、光学分析法的应用(1)成分分析。成分分析。(2)化学、物理化学各种参数的测定。化学、物理化学各种参数的测定。(3)化学反应机理的研究。化学反应机理的研究。(4)分子结构的测定。分子结构的测定。(5)遥感分析。遥感分析。(6)特征分析。特征分析。一、一、光分析法仪器的基本流程光分析法仪器的基本流程 generalprocessofspectrometry 光光谱谱仪仪器器通通常常包包括括五五个基本单元:个基本单元:光光源源;单单色色器器;样样品品;检检测器;显示与数据处理;测器;显示与数据处理;光源光源光源光源单色器单色器单色器单色器样品池样
28、品池样品池样品池检测器检测器检测器检测器记录装置记录装置记录装置记录装置二、二、光分析法仪器的基本单元光分析法仪器的基本单元mainpartsofspectrometry1.1.光源光源 依据方法不同,采用不同的光源:火焰、灯、激光、电火花、电弧等;依据光源性质不同,分为:连连续续光光源源:在较大范围提供连续波长的光源,氢灯、氘灯、钨丝灯等;线线光光源源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心阴极灯、激光等;1.1.光源光源 2.单色器 单单色色器器:获得高光谱纯度辐射束的装置,而辐射束的波长可在很宽范围内任意改变;主要部件主要部件:(1)进口狭缝;(2)准直装置(透镜或反射镜
29、):使辐射束成为平行光线;(3)色散装置(棱镜、光栅):使不同波长的辐射以不同的角度进行传播;(4)聚焦透镜或凹面反射镜,使每个单色光束在单色器的出口曲面上成像。棱镜棱镜根据光的折射现象进行分光根据光的折射现象进行分光 棱镜对不同波长的光具有不同的折射率,波长长的光,折射率小;波长短的光,折射率大。平行光经过棱镜后按波长顺序排列成为单色光;经聚焦后在焦面上的不同位置上成像,获得按波长展开的光谱;棱镜的光学特性可用色散率和分辨率来表征;棱镜的特性与参数(1 1)色散率)色散率 角色散率角色散率:用d/d表示,表示偏向角偏向角对波长的变化率;棱镜的顶角越大或折射率n越大,角色散率越大,分开两条相邻
30、谱线的能力越强,但顶角越大,反射损失也增大,通常为60度角;(2)分辨率 相邻两条靠得很近的谱线分开的能力:相邻两条靠得很近的谱线分开的能力:两条相邻谱线的平均波长;:两条谱线的波长差;b:棱镜的底边长度;n:棱镜介质材料的折射率。所以,棱镜的分辨能力取决于棱镜的几何尺寸和材料;分辨率与波长有关分辨率与波长有关,长波的分辨率要比短波的分辨率小,棱镜分离后的光谱属于非均排光谱非均排光谱。光栅(p79)通通过过在在平平板板玻玻璃璃或或金金属属板板上上刻刻划划出出一一道道道道等等宽宽、等等间间距距的的刻刻痕痕制制成成。常常用用的的光光栅栅刻刻痕痕密密度度每每毫毫米为米为12001200条、条、180
31、01800条或条或24002400条;条;根据工作方式不同分为:根据工作方式不同分为:透射光栅,反射光栅;透射光栅,反射光栅;光栅光谱的产生是多狭缝干干干干涉涉涉涉与单狭缝衍衍衍衍射射射射共同作用的结果,前者决定光谱出现的位位置置,后者决定谱线强度分布谱线强度分布;光栅的特性 ABCDE表示平面光栅的一段;光线L在AJF处同相,到达AKI平面,光线L2M2要比光线L1M1多通过JCK这段距离。FEI=2JCK,其后各缝隙的光程差将以等差级数增加,3JCK、4JCK等。当光线M1、M2、M3到达焦点时,如果他们沿平面波阵面AKI同相位,他们就会产生一个明亮的光源相,只有JCK是光线波长的整数倍时
32、才能满足条件。光栅的色散原理光栅公式:d(sinsin)=K、分别为入射角和衍射角;K为光谱级次,K=0,1,2,整数 d为光栅常数(mm):相邻两刻痕间的距离,即为光栅刻痕密度b(mm-1)的倒数;为衍射光的波长为衍射光的波长光栅公式 d(sinsin)=Kdsin为相邻入射光波与的光程差;dsin为相邻衍射光波与的光程差;d(sinsin)为光波 与光波 的总光程差;加号表示衍射光和入射光在光栅法线的同侧,减号表示它们在光栅法线的异侧;当一束复合光以一定的入射角照射光栅时,不同波长的单色光在不同衍射角的方向发生干涉。在某一光谱级次中,即当K,d一定时,波长愈长的单色光,衍射角愈大。对于给定
33、的光栅,可以通过旋转光栅转台来获得需要的波长范围和光谱级次。光栅的参数:光栅的特性可用色散率和分辨率来表征,当入射角不变时,光栅的角色散率可通过对光栅公式求导得到:d/d为衍射角对波长的变化率,即光栅的角色散率。当很小,且变化不大时,cos 1,光栅的角色散率决定于光栅常数d 和光谱级数K,常数,不随波长改变,均排光谱(优于棱镜之处)。角色散率只与色散元件的性能有关;线色散率还与仪器的焦距有关。光栅的线色散率 f 为会聚透镜的焦距。倒线色散率:用d/dl 表示,d/dl 值越大,色散率越小 光栅的分辨能力 光栅的分辨能力根据Rakleigh准则来确定。等强度的两条谱线(I,II)中,一条(II
34、)的衍射最大强度落在另一条的第一最小强度上时,两衍射图样中间的光强约为中央最大的80%,在这种情况下,两谱线中央最大距离即是光学仪器能分辨的最小距离(可分离的最小波长间隔);光栅的分辨率R等于光谱级次(K)与光栅刻痕条数(N)的乘积:光栅越宽、单位刻痕数越多、R 越大。如宽度50mm,N=1200条/mm,一级光谱的分辨率:R=1501200=6104例:用dn/d=1.310-4nm-1的60熔凝石英棱镜和刻有2000条mm-1的光栅来色散Li的460.20nm和460.30nm两条谱线。试计算(1)分辨率;(2)棱镜和光栅的大小解(1)棱镜和光栅的分辨率(2)棱镜的大小,即底边长算出光栅的
35、总刻痕数N,对于一级光谱光栅的大小,即宽度W为W=Nd=N/2000mm-1=4.6103/2000mm-1=0.23cm狭缝 单色器的进口狭缝起着单色器光学系统虚光源的作用。复合光经色散元件分开后,在出口曲面上形成相当于每条光谱线的像,即光谱。转动色散元件可使不同波长的光谱线依次通过。3.试样装置 光源与试样相互作用的场所(1)吸收池)吸收池 紫外-可见分光光度法:石英比色皿 荧光分析法:红外分光光度法:将试样与溴化钾压制成透明片(2)特殊装置)特殊装置 原子吸收分光光度法:雾化器中雾化,在火焰中,元素由离子态原子;原子发射光谱分析:试样喷入火焰;详细内容在相关章节中介绍。4.检测器(1)光检测器)光检测器 主要有以下几种:硒光电池、光电二极管、光电倍增管、硅二极管阵列检测器、半导体检测器;(2)热检测器)热检测器 主要有:真空热电偶检测器:红外光谱仪中常用的一种;热释电检测器:5.5.信号、与数据处理系统信号、与数据处理系统现代分析仪器多配有计算机完成数据采集、信号处理、数据分析、结果打印,工作站软件系统;