资源描述
七年级三角形四大模型
2016年01月07日liwei的初中数学组卷
一.选择题(共5小题)
1.(2015春•扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180° )
(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC= ;
(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;
(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;
(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).
2.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:
如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
3.(2013秋•微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为( )
A.50° B.100° C.130° D.150°
4.(2013春•连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是( )
A.120 B.150 C.240 D.360
5.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是( )
A.67° B.84° C.88° D.110°
二.填空题(共3小题)
6.(2007•遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为 cm2.
7.(2013秋•和县期末)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠An﹣1BC的平分线与∠An﹣1CD的平分线交于点An.设∠A=θ.则:
(1)∠A1= ;
(2)∠A2= ;
(3)∠An= .
8.(2013秋•綦江县校级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积等于 .
三.解答题(共9小题)
9.(2009春•江阴市校级月考)一个四边形截去一个角后就一定是三角形吗?画出所有可能的图形,并分别说出内角和和外角和变化情况.
10.(2014春•相城区月考)如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.
11.(2015春•建湖县校级月考)我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.
(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)
(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.
∠BAC的度数
40°
60°
90°
120°
∠BIC的度数
∠BDI的度数
12.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
13.(2013春•常熟市期末)已知△ABC中,∠A=60°.
(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC= °.
(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.
(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).
(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=90°,求n的值.
14.(2013春•徐州期末)如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P.探索∠P与∠B有怎样的数量关系,并证明你的结论.
15.(2008春•临川区校级期末)如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,试探索∠A与∠D之间的数量关系,并证明你的结论.
16.(2013春•工业园区期末)如图,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.
17.(2013春•海陵区期末)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,
①图2中共有 个“8字形”;
②若∠ABC=80°,∠ADC=38°,求∠P的度数;(提醒:解决此问题你可以利用图1的结论或用其他方法)
③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.
2016年01月07日liwei的初中数学组卷
参考答案与试题解析
一.选择题(共5小题)
1.(2015春•扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180° )
(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC= 120° ;
(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;
(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;
(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).
【考点】三角形内角和定理;三角形的外角性质;旋转的性质.菁优网版权所有
【分析】(1)∠BOD=60°,△AOB旋转了30°
(2)若0°<α<90°,∠AOC=∠COD+∠AOD,∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化
(3)若90°<α<180°,∠BOD+∠AOC=360°﹣(∠COD+∠AOB)=180°
【解答】解:(1)∵∠BOD=60°,△AOB绕着O点旋转了30°,即∠AOD=30°,∴∠AOC=∠AOD+∠COD=30°+90°=120°;
(2)若0°<α<90°,∵∠AOD=α,∠AOC=∠COD+∠AOD,
∴∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化,∠BOD+∠AOC=180°;
(3)若90°<α<180°,问题(2)中的结论还成立
理由:若90°<α<180°,∵∠AOB=∠COD=90°;又∵∠BOD+∠AOC+∠AOB+∠COD=360°
∴∠BOD+∠AOC=360°﹣∠AOD﹣∠COD=360°﹣90°﹣90°=180°;
(4)α=90°、60°、45°、105°、150°、135°时,两个三角形至少有一组边所在直线垂直.
【点评】本题考查了三角形旋转的性质,注意旋转角相等,旋转前后的图形不变.
2.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:
如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).
【考点】平行线的性质.菁优网版权所有
【专题】阅读型;分类讨论.
【分析】(1)①根据图形猜想得出所求角度数即可;
②根据图形猜想得出所求角度数即可;
③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;
(2)分四个区域分别找出三个角关系即可.
【解答】解:(1)①∠AED=70°;
②∠AED=80°;
③猜想:∠AED=∠EAB+∠EDC,
证明:延长AE交DC于点F,
∵AB∥DC,
∴∠EAB=∠EFD,
∵∠AED为△EDF的外角,
∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;
(2)根据题意得:
点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);
点P在区域②时,∠EPF=∠PEB+∠PFC;
点P在区域③时,∠EPF=∠PEB﹣∠PFC;
点P在区域④时,∠EPF=∠PFC﹣∠PEB.
【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
3.(2013秋•微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为( )
A.50° B.100° C.130° D.150°
【考点】三角形内角和定理;角平分线的定义.菁优网版权所有
【分析】根据角平分线定义求得∠DBC的度数,再根据三角形的内角和定理即可求解.
【解答】解:∵BD平分∠ABC,∠ABC=50°,
∴∠DBC=∠ABC=25°.
又∠DBC=∠D,
∴∠BCD=180°﹣25°×2=130°.
故选C.
【点评】此题综合运用了角平分线定义和三角形的内角和定理.
4.(2013春•连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是( )
A.120 B.150 C.240 D.360
【考点】多边形内角与外角.菁优网版权所有
【专题】计算题.
【分析】第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形,求得边数,即可求解.
【解答】解:360÷15=24,
则一共走了24×10=240m.
故选C.
【点评】本题考查了正多边形的外角的计算,第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形是关键.
5.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是( )
A.67° B.84° C.88° D.110°
【考点】三角形内角和定理.菁优网版权所有
【分析】根据三角形的内角和定理可得∠ABC+∠ACB=138°,再由∠B和∠C的三等分线可得∠DBC+∠DCB,即可求得∠BDC的度数.
【解答】解:∵∠A=42°,
∴∠ABC+∠ACB=180﹣42=138°,
∴∠DBC+∠DCB=×138°=92°,
∴∠BDC=180°﹣92°=88°.
故选C.
【点评】本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.
二.填空题(共3小题)
6.(2007•遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为 26 cm2.
【考点】相似三角形的判定与性质;平移的性质.菁优网版权所有
【专题】压轴题.
【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.
【解答】解:由平移的性质知,DE=AB=8,CF=BE=4,∠DEC=∠B=90°
∴EH=DE﹣DH=5cm
∵HC∥DF
∴△ECH∽△EFD
∴===,
又∵BE=CF,
∴EC=,
∴EF=EC+CF=,
∴S阴影=S△EFD﹣S△ECH=DE•EF﹣EC•EH=26cm2.
【点评】本题考查了相似三角形的判定和性质、直角三角形的面积公式和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
7.(2013秋•和县期末)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠An﹣1BC的平分线与∠An﹣1CD的平分线交于点An.设∠A=θ.则:
(1)∠A1= ;
(2)∠A2= ;
(3)∠An= .
【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有
【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)与(1)同理求出∠A2;
(3)根据求出的结果,可以发现后一个角等于前一个角的,根据此规律即可得解.
【解答】(1)解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
∴(∠A+∠ABC)=∠ABC+∠A1,
∴∠A1=∠A,
∵∠A=θ,
∴∠A1=,
故答案为:;
(2)同理可得∠A2=∠A1=,
故答案为:;
(3)同理可得∠A2=∠A1=×=,
所以∠An=
故答案为:.
【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键.
8.(2013秋•綦江县校级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积等于 2cm2 .
【考点】三角形的面积.菁优网版权所有
【分析】如图,因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.
【解答】解:如图,点F是CE的中点,
∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;
∴S△BEF=S△BEC,
D、E、分别是BC、AD的中点,同理得,
S△EBC=S△ABC,
∴S△BEF=S△ABC,且S△ABC=8cm2,
∴S△BEF=2cm2,
即阴影部分的面积为2cm2,
故答案是:2cm2.
【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.
三.解答题(共9小题)
9.(2009春•江阴市校级月考)一个四边形截去一个角后就一定是三角形吗?画出所有可能的图形,并分别说出内角和和外角和变化情况.
【考点】多边形内角与外角.菁优网版权所有
【分析】先根据截去一个角后的图形是三角形、四边形或五边形画出图形,再根据三角形及多边形的内角和定理即可解答.
【解答】解:锯掉一个角时可能出现以下几种情况,如答图
因此剩下的图形可能是五边形、四边形、三角形,内角和可能为540°、360°、180°.
外角和无变化,外角和为360°.
【点评】此题比较简单,考查的是多边形的外角和及内角和定理,解答此题时要熟知:
(1)任意多边形的外角和为360°;
(2)多边形的内角和=(n﹣2)•180°.
10.(2014春•相城区月考)如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.
【考点】三角形内角和定理.菁优网版权所有
【专题】几何图形问题.
【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°﹣∠BCE﹣∠CBD即可得出结论.
【解答】解:在△ABC中,
∵∠A=65°,∠ACB=72°
∴∠ABC=43°
∵∠ABD=30°
∴∠CBD=∠ABC﹣∠ABD=13°
∵CE平分∠ACB
∴∠BCE=∠ACB=36°
∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.
故答案为:131°
【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
11.(2015春•建湖县校级月考)我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.
(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)
(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.
∠BAC的度数
40°
60°
90°
120°
∠BIC的度数
∠BDI的度数
【考点】三角形的角平分线、中线和高;三角形内角和定理.菁优网版权所有
【专题】探究型.
【分析】(1)通过画图、度量,即可完成表格;
(2)先从上表中发现∠BIC=∠BDI,再分别证明∠BIC=90°+∠BAC,∠BDI=90°+∠BAC.
【解答】解:(1)填写表格如下:
∠BAC的度数
40°
60°
90°
120°
∠BIC的度数
110°
120°
135°
150°
∠BDI的度数
110°
120°
135°
150°
(2)∠BIC=∠BDI,理由如下:
∵△ABC的三条内角平分线相交于点I,
∴∠BIC=180°﹣(∠IBC+∠ICB)
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠BAC)
=90+∠BAC;
∵AI平分∠BAC,
∴∠DAI=∠DAE.
∵DE⊥AI于I,
∴∠AID=90°.
∴∠BDI=∠AID+∠DAI=90°+∠BAC.
∴∠BIC=∠BDI.
【点评】本题主要考查了三角形的内心的性质,三角形内角和定理、外角的性质,角平分线的性质以及垂线的性质,比较简单.
12.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
【考点】平行线的性质;角平分线的性质.菁优网版权所有
【专题】动点型;探究型.
【分析】(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;
(2)过点P作AC的平行线,根据平行线的性质解答;
(3)根据P的不同位置,分三种情况讨论.
【解答】解:(1)解法一:如图1延长BP交直线AC于点E.
∵AC∥BD,∴∠PEA=∠PBD.
∵∠APB=∠PAE+∠PEA,
∴∠APB=∠PAC+∠PBD;
解法二:如图2
过点P作FP∥AC,
∴∠PAC=∠APF.
∵AC∥BD,∴FP∥BD.
∴∠FPB=∠PBD.
∴∠APB=∠APF+∠FPB
=∠PAC+∠PBD;
解法三:如图3,
∵AC∥BD,
∴∠CAB+∠ABD=180°,
∠PAC+∠PAB+∠PBA+∠PBD=180°.
又∠APB+∠PBA+∠PAB=180°,
∴∠APB=∠PAC+∠PBD.
(2)不成立.
(3)(a)当动点P在射线BA的右侧时,结论是:
∠PBD=∠PAC+∠APB.
(b)当动点P在射线BA上,结论是:
∠PBD=∠PAC+∠APB.
或∠PAC=∠PBD+∠APB或∠APB=0°,
∠PAC=∠PBD(任写一个即可).
(c)当动点P在射线BA的左侧时,
结论是∠PAC=∠APB+∠PBD.
选择(a)证明:
如图4,连接PA,连接PB交AC于M.
∵AC∥BD,
∴∠PMC=∠PBD.
又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),
∴∠PBD=∠PAC+∠APB.
选择(b)证明:如图5
∵点P在射线BA上,∴∠APB=0度.
∵AC∥BD,∴∠PBD=∠PAC.
∴∠PBD=∠PAC+∠APB
或∠PAC=∠PBD+∠APB
或∠APB=0°,∠PAC=∠PBD.
选择(c)证明:
如图6,连接PA,连接PB交AC于F
∵AC∥BD,∴∠PFA=∠PBD.
∵∠PAC=∠APF+∠PFA,
∴∠PAC=∠APB+∠PBD.
【点评】此题考查了角平分线的性质;是一道探索性问题,旨在考查同学们对材料的分析研究能力和对平行线及角平分线性质的掌握情况.认真做好(1)(2)小题,可以为(3)小题提供思路.
13.(2013春•常熟市期末)已知△ABC中,∠A=60°.
(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC= 120 °.
(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= 100 °.
(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).
(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=90°,求n的值.
【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有
【专题】规律型.
【分析】(1)先根据三角形内角和定理求得∠ABC+∠ACB,再根据角平分线的定义求得∠OBC+∠OCB,即可求出∠BOC.
(2)先根据三角形内角和定理求得∠ABC+∠ACB,再根据三等分线的定义求得∠O2BC+∠O2CB,即可求出∠BO2C.
(3)先根据三角形内角和定理求得∠ABC+∠ACB,再根据n等分线的定义求得∠On﹣1BC+∠On﹣1CB,即可求出∠BOn﹣1C.
(4)依据(3)的结论即可求出n的值.
【解答】解:∵∠BAC=60°,
∴∠ABC+∠ACB=120°,
(1)∵点O是∠ABC与∠ACB的角平分线的交点,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=60°,
∴∠BOC=120°;
(2)∵点O2是∠ABC与∠ACB的三等分线的交点,
∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=80°,
∴∠BO2C=100°;
(3)∵点On﹣1是∠ABC与∠ACB的n等分线的交点,
∴∠On﹣1BC+∠On﹣1CB=(∠ABC+∠ACB)=×120°,
∴∠BOn﹣1C=180°﹣×120°=(1+)×60°;
(4)由(3)得:(1+)×60°=90°,
解得:n=4.
【点评】此题练习角的等分线的性质以及三角形内角和定理.根据题意找出规律是解题的关键.
14.(2013春•徐州期末)如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P.探索∠P与∠B有怎样的数量关系,并证明你的结论.
【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有
【分析】根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PAC和∠PCA,再根据三角形的内角和定理列式整理即可得解.
【解答】解:由三角形的外角性质,∠DAC=∠B+∠ACB,∠ACE=∠B+∠BAC,
∵PA、PC分别是∠DAC和∠ACE的角平分线,
∴∠PAC=∠DAC=(∠B+∠ACB),
∠PCA=∠ACE=(∠B+∠BAC),
在△ACP中,∠P+∠PAC+∠PCA=180°,
∴∠P+(∠B+∠ACB)+(∠B+∠BAC)=180°,
∴2∠P+∠B+∠ACB+∠B+∠BAC=360°,
在△ABC中,∠ACB+∠B+∠BAC=180°,
∴2∠P+∠B=180°,
∴∠P=90°﹣∠B.
【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质与定理并准确识图是解题的关键,整体思想的利用也很关键.
15.(2008春•临川区校级期末)如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D,试探索∠A与∠D之间的数量关系,并证明你的结论.
【考点】三角形内角和定理;角平分线的定义.菁优网版权所有
【专题】探究型.
【分析】先根据角平分线的性质求出∠DBC、∠DCB与∠A的关系,再根据三角形内角和定理求解即可.
【解答】解:∵BD、CD是∠ABC和∠ACB的角平分线,
∴∠DBC=∠ABC,∠DCB=∠ACB,
∵∠ABC+∠ACB=180°﹣∠A,
∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,
∴∠BDC=90°+∠A.
【点评】本题考查的是角平分线的性质及三角形内角和定理.三角形内角和定理:三角形的内角和为180°.
16.(2013春•工业园区期末)如图,已知AB∥DE,BF,EF分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.
【考点】平行线的性质;角平分线的定义.菁优网版权所有
【专题】计算题.
【分析】过点C作CP∥AB,然后利用两直线平行,内错角相等得到∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;同理过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,结合角平分线的性质就可求出∠BFE的度数.
【解答】解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;
又∵BF,EF分别平分∠ABC,∠CED,
∴∠ABF=∠ABC,∠DEF=∠DEC;
∴∠ABF+∠DEF=(∠ABC+∠DEC)=70°,
过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,
∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.
【点评】本题主要考查作辅助线构造三条互相平行的直线,然后利用平行线的性质和角的和差关系求解.
17.(2013春•海陵区期末)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,
①图2中共有 6 个“8字形”;
②若∠ABC=80°,∠ADC=38°,求∠P的度数;(提醒:解决此问题你可以利用图1的结论或用其他方法)
③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.
【考点】三角形内角和定理;平行线的性质;三角形的外角性质.菁优网版权所有
【分析】(1)利用三角形的内角和定理表示出∠AEB与∠DEC,再根据对顶角相等可得∠AEB=∠DEC,然后整理即可得解;
(2)①根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;
②根据(1)的关系式求出∠DCO﹣∠BAO=42°,再根据角平分线的定义求出∠DAM﹣∠PCM,然后利用“8字形”的关系式列式整理即可得解;
③根据“8字形”用∠B、∠D表示出∠OCD﹣∠OAB,再用∠B、∠P表示出∠BAM﹣∠PCM,然后根据角平分线的定义可得∠BAM﹣∠PCM=(∠OCD﹣∠OAB),然后整理即可得证.
【解答】解:(1)在△AEB中,∠AEB=180°﹣∠A﹣∠B,
在△DEC中,∠DEC=180°﹣∠D﹣∠C,
∵∠AEB=∠DEC(对顶角相等),
∴180°﹣∠A﹣∠B=180°﹣∠D﹣∠C,
∴∠A+∠B=∠D+∠C;
(2)①交点有点M、N各有1个,交点O有4个,
所以,“8字形”图形共有6个;
故答案为:6;
②∵∠ABC=80°,∠ADC=38°,
∴∠OAB+80°=∠DOC+38°,
∴∠DCO﹣∠BAO=42°,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠DAM=∠DAB,∠PCM=∠OCD,
又∵∠DAM+∠P=∠PCD+∠ADC,
∴∠P=∠PCD+∠ADC﹣∠DAM=(∠DCO﹣∠BAO)+∠ADC=×42°+38°=59°;
③根据“8字形”数量关系,∠OAB+∠B=∠OCD+∠D,∠BAM+∠B=∠PCM+∠P,
所以,∠OCD﹣∠OAB=∠B﹣∠D,∠PCM﹣∠BAM=∠B﹣∠P,
∵AP、CP分别是∠DAB和∠BCD的角平分线,
∴∠BAM=∠OAB,∠PCM=∠OCD,
∴(∠B﹣∠D)=∠B﹣∠P,
整理得,2∠P=∠B+∠D.
【点评】本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.
第43页(共43页)
展开阅读全文