资源描述
数学数学人教版七年级下册数学期末压轴难题模拟试卷及答案
一、选择题
1.下列图形中,与是同旁内角的是( )
A. B. C. D.
2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )
A. B. C. D.
3.如果在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列说法中正确的个数为( )
①过一点有且只有一条直线与已知直线垂直;
②两条直线被第三条直线所截,同位角相等;
③经过两点有一条直线,并且只有一条直线;
④在同一平面内,不重合的两条直线不是平行就是相交.
A.个 B.个 C.个 D.个
5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )
A. B. C. D.
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.如图,已知直线,的平分线交于点F,,则等于( )
A. B. C. D.
8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五次运动到P5(5,2),第六次运动到P6(6,0),…,按这样的运动规律,点P2021的纵坐标是( )
A.﹣2 B.0 C.1 D.2
二、填空题
9.的算术平方根是________.
10.在平面直角坐标系中,点与点关于轴对称,则的值是_____.
11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2
12.如图,,平分,交于,若,则的度数是______°.
13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____.
14.对于有理数x、y,当x≥y时,规定x※y=yx;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______.
15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.
16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________.
三、解答题
17.(1)计算:
(2)计算:
(3)计算:
(4)计算:
18.求满足下列各式的未知数.
(1).
(2).
19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2.
证明:∵BD⊥CD,EF⊥CD(已知)
∴∠BDC=∠EFC=90°(垂直的定义)
∴ (同位角相等,两直线平行)
∴∠2=∠3
∵∠A=80°,∠ABC=100°(已知)
∴∠A+∠ABC=180°
∴AD//BC
∴ (两直线平行,内错角相等)
∴∠1=∠2 .
20.已知点P(﹣3a﹣4,a+2).
(1)若点P在y轴上,试求P点的坐标;
(2)若M(5,8),且PM//x轴,试求P点的坐标;
(3)若点P到x轴,y轴的距离相等,试求P点的坐标.
21.已知某正数的两个平方根分别是和的立方根是是的整数部分.
(1)求的值;
(2)求的算术平方根.
二十二、解答题
22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长;
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.
二十三、解答题
23.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系: .
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数
24.如图1,E点在BC上,∠A=∠D,AB∥CD.
(1)直接写出∠ACB和∠BED的数量关系 ;
(2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E;
(3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由.
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
26.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义去判断
【详解】
∵A选项中的两个角,符合同旁内角的定义,
∴选项A正确;
∵B选项中的两个角,不符合同旁内角的定义,
∴选项B错误;
∵C选项中的两个角,不符合同旁内角的定义,
∴选项C错误;
∵D选项中的两个角,不符合同旁内角的定义,
∴选项D错误;
故选A.
【点睛】
本题考查了同旁内角的定义,结合图形准确判断是解题的关键.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.B
【分析】
根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴a+b<0,ab>0,
∴点Q(a+b,ab)在第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决.
【详解】
解:①平面内,过一点有且只有一条直线与已知直线垂直,故①错误;
②两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故②错误;
③经过两点有一条直线,并且只有一条直线,故③正确;
④在同一平面内,不重合的两条直线不是平行就是相交,故④正确.
故选:B.
【点睛】
本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,可以判断各个选项中的说法是否正确.
5.A
【分析】
过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.
【详解】
如图,过三角板60°角的顶点作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠3+∠4=60°,
∴∠1+∠2=60°,
∵∠1=25°,
∴∠2=35°,
故选A.
【点睛】
本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.B
【分析】
根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论.
【详解】
解:∵,
∴,,
∵的平分线交于点F,
∴,
∴,
∴,
故选:B.
【点睛】
本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键.
8.D
【分析】
观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到
解析:D
【分析】
观察图象,结合动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,-2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,分别得出点P运动的纵坐标的规律,再根据循环规律可得答案.
【详解】
解:观察图象,结合动点P第一次从原点O运动到点P1(1,1),
第二次运动到点P2(2,0),
第三次运动到P3(3,-2),
第四次运动到P4(4,0),
第五运动到P5(5,2),
第六次运动到P6(6,0),
…,
结合运动后的点的坐标特点,
可知由图象可得纵坐标每6次运动组成一个循环:1,0,-2,0,2,0;
∵2021÷6=336…5,
∴经过第2021次运动后,动点P的纵坐标是2,
故选:D.
【点睛】
本题考查了规律型点的坐标,数形结合并从图象中发现循环规律是解题的关键.
二、填空题
9.2
【分析】
先求出=4,再求出算术平方根即可.
【详解】
解:∵=4,
∴的算术平方根是2,
故答案为:2.
【点睛】
本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.
解析:2
【分析】
先求出=4,再求出算术平方根即可.
【详解】
解:∵=4,
∴的算术平方根是2,
故答案为:2.
【点睛】
本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.
10.4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的
解析:4
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
故答案为.
【点睛】
本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.
11.6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关
解析:6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关键.
12.25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为
解析:25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为:25.
【点睛】
本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
13.【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵
解析:【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵△ABC沿直线AC翻折得到△ADC,
∴S△ABC=S△ADC,BD⊥AC,BE=ED,
∴S四边形ABCD=8,
∴,
∵BE=2,AE=3,
∴BD=4,
∴AC=4,
∴CE=AC﹣AE=4﹣3=1.
故答案为1.
【点睛】
本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键.
14.或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=
解析:或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=2※m=36
当时,原式可化为
解得:
;
当时,原式可化为:
解得:;
综上所述,m的值为:或;
故答案为:16;或.
【点睛】
本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.
15.(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),
解析:(0,4)或(0,-4).
【分析】
设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.
【详解】
解:设△ABC边AB上的高为h,
∵A(1,0),B(2,0),
∴AB=2-1=1,
∴△ABC的面积=×1•h=2,
解得h=4,
点C在y轴正半轴时,点C为(0,4),
点C在y轴负半轴时,点C为(0,-4),
所以,点C的坐标为(0,4)或(0,-4).
故答案为:(0,4)或(0,-4).
【点睛】
本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.
16.【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
解析:
【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,
解析:(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,再合并即可.
【详解】
解:(1)
(2)
(3)
(4)
【点睛】
本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识.
18.(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
解析:(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
【点睛】
本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.
19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【分析】
根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据
解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【分析】
根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.
【详解】
证明:∵BD⊥CD,EF⊥CD(已知),
∴∠BDC=∠EFC=90°(垂直的定义),
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠3(两直线平行,同位角相等),
∵∠A=80°,∠ABC=100°(已知),
∴∠A+∠ABC=180°,
∴AD∥BC(同旁内角互补,两直线平行),
∴∠1=∠3(两直线平行,内错角相等),
∴∠1=∠2(等量代换).
故答案为:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【点睛】
本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.
20.(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).
【分析】
(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;
(2)根据平行于x轴的直线上的点的纵坐标相
解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).
【分析】
(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;
(2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案;
(3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案.
【详解】
(1)∵点P在y轴上,
∴,
∴,
∴
∴P(0,).
(2)∵PM//x轴,
∴,
∴,此时,,
∴P(-22,8)
(3)∵若点P到x轴,y轴的距离相等,
∴,
∴或,
解得:或,
当时,﹣3a﹣4=,a+2=,
∴P(,),
当时,﹣3a﹣4=-1,a+2=1,
∴P(-1,1),
综上所述:P(,)或P(-1,1).
【点睛】
本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.
21.(1),,c=4;(2)4
【分析】
(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;
(2)代入a、b、c的值求出代数式的值,再求算术平方根即可.
【详解】
解:(1)∵某
解析:(1),,c=4;(2)4
【分析】
(1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值;
(2)代入a、b、c的值求出代数式的值,再求算术平方根即可.
【详解】
解:(1)∵某正数的两个平方根分别是和
∴
∴
又∵的立方根是3
∴
∴
又∵,c是的整数部分
∴
(2)
故的算术平方根是4.
【点睛】
本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键.
二十二、解答题
22.(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
解析:(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
(2)因为正方体的棱长为4,所以AB=.
【点睛】
本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.
二十三、解答题
23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根
解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,
∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=∠DEB=∠DEA,
∴∠PEA=∠AED,
∴∠DEP=∠PEA+∠AED=∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
24.(1)∠ACB+∠BED=180°;(2)100°;(3)40°
【分析】
(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A
解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°
【分析】
(1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论;
(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数;
(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数.
【详解】
解:(1)如图1,延长交于点,
,
,
,
,
,
,
,
故答案为:;
(2)如图2,作,,
,
,
,,
平分,
,
,
,
,
,
,
平分,
,
,
,
,
设,
,
比大,
,
,
解得.
的度数为;
(3)的度数不变,理由如下:
如图3,过点作,设直线和直线相交于点,
平分,平分,
,
,
,,
,
,
,
,
由(2)可知:,
,
,
,
,
,
.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
26.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A
解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)
【分析】
(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;
②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;
(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;
(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.
【详解】
(1)①过F作FG//AB,如图:
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠ABF=∠BFG,∠CDF=∠DFG,
∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,
∴∠ABF+∠CDF=70,
∴∠DFB=∠ABF+∠CDF=70,
故答案为:70;
②∠F=∠BED,
理由是:分别过E、F作EN//AB,FM//AB,
∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,
∴∠BED=∠ABE+∠CDE,
∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,
∴∠ABE=2∠ABF,∠CDE=2∠CDF,
即∠BED=2(∠ABF+∠CDF);
同理,由FM//AB,可得∠F=∠ABF+∠CDF,
∴∠F=∠BED;
(3)2∠F+∠BED=360°.
如图,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
∵AB∥CD,EG∥AB,
∴CD∥EG,
∴∠DEG+∠CDE=180°,
∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∵DF平分∠CDE,
∴∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由①得:∠BFD=∠ABF+∠CDF,
∴∠BED=360°-2∠BFD,
即2∠F+∠BED=360°;
(3)∵,∠F=α,
∴,
解得:,
如图,
∵∠CDE 为锐角,DF是∠CDE的角平分线,
∴∠CDH=∠DHB,
∴∠F∠DHB,即,
∴,
故答案为:.
【点睛】
本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.
展开阅读全文