1、七年级-实数-易错题实数易错题一选择题(共26小题)1(2012雅安)9的平方根是()A3B3C3D812(2011黔南州)的平方根是()A3B3CD3(2005南充)一个数的平方是4,这个数的立方是()A8B8C8或8D4或44(2003广西)已知mn,按下列A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是()A(mn)2=(nm)2B=Cmn=nmDm=n5下列给出的“25的平方根是5”的表达式中,正确的是()A=5B=5C=5D=56实数的平方根为()AaBaCD7(通州区二模)已知,那么(a+b)2016的值为()A1B1C32016D320168的算术平方根与2
2、的相反数的倒数的积是()A4B16CD9(永州)下列判断正确的是()A2B2+3C12D4510(2012瑞安市模拟)下列各选项中,最小的实数是()A3B0CD11在实数、0、3.1415、2.123122312223中,无理数的个数为()A2个B3个C4个D5个12下列说法中正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数13估算的值是在()A2与3之间B3与4之间C4与5之间D5与6之间14(2004富阳市模拟)数轴上有两点A、B分别表示实数a、b,则线段AB的长度是()AabBa+bC|ab|D|a+b|15在中无理数有()个A3个B4个C
3、5个D616实数,0.2020020002(每两个2之间依次增加一个0)中,无理数的个数是()A2个B3个C4个D5个17在实数 ,0,3.14,0,0.03745,3.14,2.123122312233中,无理数有()A2B3C4D518一个立方体的体积是9,则它的棱长是()A3B3CD19下列语句:1是1的平方根带根号的数都是无理数1的立方根是1的立方根是2(2)2的算术平方根是2125的立方根是5有理数和数轴上的点一一对应其中正确的有()A2个B3个C4个D5个20的平方根为()A8B4C2D421若x2=(3)2,y327=0,则x+y的值是()A0B6C0或6D0或622使为最大的负
4、整数,则a的值为()A5B5C5D不存在23下列计算正确的是()ABCD24两个无理数的和,差,积,商一定是()A无理数B有理数C0D实数25化简的结果是()ABCD26若|a|+(b+1)2=0,则的值是()ABCD二填空题(共3小题)27若(x15)2=169,(y1)3=0.125,则=_28(2013咸宁模拟)已知:a和b都是无理数,且ab,下面提供的6个数a+b,ab,ab,ab+ab,ab+a+b可能成为有理数的个数有_个29的平方根与的立方根的积为_三解答题(共1小题)30计算:+2013年11月安琪儿的初中数学组卷参考答案与试题解析一选择题(共26小题)1(2012雅安)9的平
5、方根是()A3B3C3D81考点:平方根1032725分析:如果一个非负数x的平方等于a,那么x是a是算术平方根,根据此定义解题即可解决问题解答:解:(3)2=9,9的平方根是3故选C点评:本题主要考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根2(2011黔南州)的平方根是()A3B3CD考点:算术平方根;平方根1032725分析:首先根据平方根概念求出=3,然后求3的平方根即可解答:解:=3,的平方根是故选D点评:本题主要考查了平方根、算术平方根概念的运用如果x2=a(a0),则x是a的平方根若a0,则它有两个平方根并且互为相反数,我们把正的平方根
6、叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根3(2005南充)一个数的平方是4,这个数的立方是()A8B8C8或8D4或4考点:平方根;有理数的乘方1032725分析:首先利用平方根的定义先求出这个数,再求其立方即可解答:解:(2)2=4,这个数为2,(2)3=8故选C点评:本题考查了平方根的定义和求一个数的立方注意一个正数有两个平方根,它们互为相反数4(2003广西)已知mn,按下列A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是()A(mn)2=(nm)2B=Cmn=nmDm=n考点:平方根1032725专题:计
7、算题分析:A、根据平方的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的定义即可判定;D、根据等式的性质即可判定解答:解:A、(mn)2=(nm)2是正确的,故选项正确;B、=正确,故选项正确;C、只能说|mn|=|nm|,故选项错误;D、由C可以得到D,故选项正确故选C点评:本题主要考查了学生开平方的运算能力,也考查了学生的推理能力5下列给出的“25的平方根是5”的表达式中,正确的是()A=5B=5C=5D=5考点:算术平方根1032725分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案解答:解:“25的平方根是5”,根据平方根的定义,即可
8、得出=5故选C点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键6实数的平方根为()AaBaCD考点:平方根1032725专题:计算题分析:首先根据算术平方根的定义可以求得=|a|,再利用绝对值的定义可以化简|a|即可得到结果解答:解:当a为任意实数时,=|a|,而|a|的平方根为实数的平方根为故选D点评:此题主要考查了平方根的性质,注意此题首先利用了=|a|,然后要注意区分平方根、算术平方根的概念7(2008通州区二模)已知,那么(a+b)2008的值为()A1B1C32008D32008考点:非负数的性质:算术平方根;非负数的性质:绝对值1032725分析:本题
9、可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入原式即可解答:解:依题意得:a+2=0,b1=0,a=2,b=1,(a+b)2008=(1)2008=1故选B点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根)当它们相加和为0时,必须满足其中的每一项都等于0根据这个结论可以求解这类题目8的算术平方根与2的相反数的倒数的积是()A4B16CD考点:算术平方根1032725分析:首先根据算术平方根的定义求出的值,然后利用相反数、倒数的定义即可求出结果解答:解:的算术平方根2,2的相反数的倒数,的
10、算术平方根与2的相反数的倒数的积是故选C点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误弄清概念是解决本题的关键9(2008永州)下列判断正确的是()A2B2+3C12D45考点:实数大小比较1032725分析:先对每一组的无理数进行估算,再对每一项进行逐一比较即可解答:解:1.7,1.4,2.2,A、1.51.72,即2,故选项正确;B、+1.7+1.4=3.1,2+4,故选项错误;C、2.21.7=0.5,12,故选项误;D、=3.9,26,故选项错误故选A点评:此题主要考查了实数的大小的比较,比较简单,解答此题的关键是对无理数进行估算,再根据其和差进行
11、比较10(2012瑞安市模拟)下列各选项中,最小的实数是()A3B0CD考点:实数大小比较1032725专题:推理填空题分析:先根据实数的大小比较法则进行比较,再求出答案即可解答:解:30,最小的实数是3,故选A点评:本题考查了实数的大小比较法则的应用,实数的大小比较法则是:负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小,题目比较典型,是一道比较容易出错的题目11在实数、0、3.1415、2.123122312223中,无理数的个数为()A2个B3个C4个D5个考点:无理数1032725专题:推理填空题分析:根据无理数的意义:含的;开方开不尽的根式;一些有规律的数,
12、判断即可解答:解:无理数有、2.123122312223,共4个故选C点评:本题考查了对无理数的意义的理解和运用,关键是能正确判断一个数是否是无理数12下列说法中正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数考点:无理数1032725专题:推理填空题分析:举出反例如,循环小数1.333,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C解答:解:A、如=2,不是无理数,故本选项错误;B、无理数都能在数轴上表示出来,故本选项错误;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确;D、如1.333333
13、33,是无限循环小数,是有理数,故本选项错误;故选C点评:本题考查了对无理数的意义的理解和运用,无理数包括:开方开不尽的数,含的,一些有规律的数13估算的值是在()A2与3之间B3与4之间C4与5之间D5与6之间考点:估算无理数的大小1032725专题:计算题分析:根据根式的性质得出,求出、的值,代入即可解答:解:,45,在4和5之间故选C点评:本题考查了有理数的大小比较的应用,主要考查学生能否知道的范围14(2004富阳市模拟)数轴上有两点A、B分别表示实数a、b,则线段AB的长度是()AabBa+bC|ab|D|a+b|考点:实数与数轴1032725分析:根据数轴上两点之间的距离公式即可解
14、决问题解答:解:根据数轴上两点之间的距离公式可知,线段AB的长度是|ab|故选C点评:此题主要考查了实数与数轴之间对应关系,很简单,解答此题的关键是熟知数轴上两点之间的距离公式:|AB|=|ab|15在中无理数有()个A3个B4个C5个D6考点:无理数1032725分析:根据无理数、有理数的定义即可判定求解解答:解:在中,显然,=14、3.14、是有理数;0.333是循环小数是有理数;是分数,是有理数;所以,在上一列数中,、0.58588558885是无理数,共有3个;故选A点评:此题主要考查了无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每
15、两个8之间依次多1个0)等形式16实数,0.2020020002(每两个2之间依次增加一个0)中,无理数的个数是()A2个B3个C4个D5个考点:无理数1032725专题:推理填空题分析:无理数包括三方面的数:含的;开方开不尽的根式;一些有规律的数,根据以上结论判断即可解答:解:无理数有,0.2020020002,共4个,故选C点评:本题考查了对无理数的定义的理解和运用,理解无理数的定义是解此题的关键,无理数是指无限不循环小数,包括三方面的数:含的;开方开不尽的根式;一些有规律的数题型较好,难度适中17在实数 ,0,3.14,0,0.03745,3.14,2.123122312233中,无理数
16、有()A2B3C4D5考点:无理数1032725专题:推理填空题分析:根据无理数的定义(包括含的开方开不尽的数,一些有规律的数)进行判断即可解答:解:无理数有,共3个,故选B点评:本题考查了对无理数的定义的理解,关键是能判断一个数是否是无理数18一个立方体的体积是9,则它的棱长是()A3B3CD考点:立方根1032725专题:常规题型分析:根据立方根的定义解答即可解答:解:设立方体的棱长为a,则a3=9,a=故选D点评:本题主要考查了立方体的体积公式与立方根的概念,是基础题,但计算时容易出错19下列语句:1是1的平方根带根号的数都是无理数1的立方根是1的立方根是2(2)2的算术平方根是2125
17、的立方根是5有理数和数轴上的点一一对应其中正确的有()A2个B3个C4个D5个考点:无理数;平方根;算术平方根;立方根;实数与数轴1032725专题:推理填空题分析:根据平方根的意义求出(a0),即可判断,根据无理数的意义即可判断;根据立方根的意义求出,即可判断,根据算术平方根求出(a0),即可判断;根据实数和数轴上的点能建立一一对应关系,即可判断解答:解:1的平方根是1,正确;如=2,但是有理数,错误;1的立方根是1,正确;=2,2的立方根是,错误;(2)2=4,4的算术平方根是=2,正确;125的立方根是5,错误;实数和数轴上的点一一对应,错误;正确的有3个故选B点评:本题考查了对无理数,
18、平方根,算术平方根,立方根,实数和数轴等知识点的理解和运用,关键是考查学生能否根据这些定义求出数的平方根、立方根、算术平方根等等20的平方根为()A8B4C2D4考点:立方根;平方根1032725分析:首先根据立方根的定义化简,然后根据平方根的定义即可求出结果解答:解:=4,又(2)2=4,的平方根是2故选C点评:本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根21若x2=(3)2,y327=0,则x+y的值是()A0B6C0或6D0或6考点:立方根;平方根1032725分析:先根据平方根和立方根的概念求出x、y的值,然后代入所求代数式求解即可解答
19、:解:由题意,知:x2=(3)2,y3=27,即x=3,y=3,x+y=0或6故选C点评:本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是022使为最大的负整数,则a的值为()A5B5C5D不存在考点:立方根1032725分析:由于使为最大的负整数,那么其中的被开方数必须是一个整数的立方,利用立方根的定义和绝对值意义来解即可解答:解:最大负整数为1,=1,a=5故选A点评:此题主要考查了立方根的定义和绝对值的性质,解题关键利用最大负整数为1建立含有绝对值的方程,求出a
20、的值23下列计算正确的是()ABCD考点:立方根1032725分析:A、B、C、D都可以直接根据立方根的定义求解即可判定解答:解:A、0.53=0.625,故选项错误;B、应取负号,故选项错误;C、等于,的立方根等于,故选项正确;D、应取正号,故选项错误故选C点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同24两个无理数的和,差,积,商一定是()A无理数B有理数C0D实数考点:实数的运算1032725分析:根据无理数的加减乘除运算的法则和无理数的定义即可判定解答
21、:解:因为+()=0,+=2,所以其和可以为有理数,也可为无理数;因为=0,2=,所以其差可以为有理数,也可为无理数;因为=2,=,所以其积可以为有理数,也可为无理数;因为=1,=,所以其商可以为有理数,也可为无理数所以两个无理数的和,差,积,商一定是实数故选D点评:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法25化简的结果是()ABCD考点:实数的运算1032725分析:在进行根式的运算时要先根据最简二次根式和最简三次根式的性质化简,再计算可使计算简便解答:解:原式=1+2=3故选B点评:此题主要考查了实数的运算,解题关键首先化简去掉根号26若|a|
22、+(b+1)2=0,则的值是()ABCD考点:实数的运算;非负数的性质:绝对值;非负数的性质:偶次方1032725专题:计算题分析:根据非负整数的性质得到a=0,b+1=0,则a=,b=1,然后把它们代入计算即可解答:解:|a|+(b+1)2=0,a=0,b+1=0,a=,b=1,2=2=2故选A点评:本题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号也考查了非负整数的性质二填空题(共3小题)27若(x15)2=169,(y1)3=0.125,则=1或3考点:实数的运算1032725分析:先根据平方根、立方根的定义解已知的两个方程求出x、y的值,然后再代值求
23、解解答:解:方程(x15)2=169两边开平方得x15=13,解得:x1=28,x2=2,方程(y1)3=0.125两边开立方得y1=0.5,解得y=0.5,当x=28,y=0.5时,=3;当x=2,y=0.5时,=1故答案为:1或3点评:本题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同28(2013咸宁模拟)已知:a和b都是无理数,且ab,下面提供的6个数a+b,ab,ab,ab+ab,ab+a+b可能成为有理数的个数有6个考点:实数的运算1032725分析:由于a和b都是无理数,且ab,可以由此取具体数值,然后根据实数的运算顺序进行计算即可判定解
24、答:解:当a=,b=,时,a+b=0,ab=2,ab+a+b=2,=1,当a=+1,b=1时,ab=+1+1=2,ab+ab=3+2=5故可能成为有理数的个数有6个点评:此题主要考查了实数的运算解题关键注意无理数的运算法则与有理数的运算法则是一样的29的平方根与的立方根的积为1或1考点:实数的运算1032725专题:计算题分析:先求出,再根据平方根的定义求解,然后根据立方根的定义求出的立方根,最后讨论求解即可解答:解:=4,的平方根是2,()3=,的立方根为,2()=1,2()=1,的平方根与的立方根的积为1或1故答案为:1或1点评:本题主要考查了平方根与立方根的定义,注意先求出的值,这也是本题容易出错的地方三解答题(共1小题)30计算:+考点:实数的运算1032725专题:计算题分析:分别进行开立方及开平方的运算,然后合并即可解答:解:原式=(2)+5+2=9点评:本题考查了实数的运算,属于基础题,关键是掌握开平方及开立方得运算法则26