收藏 分销(赏)

中考专题之图形的折叠---副本公开课教案教学设计课件案例试卷题.doc

上传人:二*** 文档编号:4496005 上传时间:2024-09-25 格式:DOC 页数:6 大小:113KB 下载积分:5 金币
下载 相关 举报
中考专题之图形的折叠---副本公开课教案教学设计课件案例试卷题.doc_第1页
第1页 / 共6页
本文档共6页,全文阅读请下载到手机保存,查看更方便
资源描述
中考复习专题中考中的折叠问题 简介: 几何图形的折叠问题是中考的一个压轴热点,呈现的形式是特殊三角形折叠、特殊 四边形折叠、圆的折叠等几类.其本质是转化为特殊三角形问题(等腰三角形和直角三角形),结合相似,勾股定理等基本定理进行解决. 例题1.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为   °. (2)小明手中有一张矩形纸片ABCD,AB=4,AD=9. 【画一画】 如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚); 【算一算】 如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长; 【验一验】 如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由. 练习1.如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′. (1)当B′C′恰好经过点D时(如图1),求线段CE的长; (2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积; (3)在点E从点C移动到点D的过程中,求点C′运动的路径长. 例题2.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②) (1)根据以上操作和发现,求的值; (2)将该矩形纸片展开. ①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°; ②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由) 练习2.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x. (1)当AM=时,求x的值; (2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值; (3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值. 课后练习: 11.如图,已知等边三角形OAB与反比例函数y=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为   .(已知sin15°=) 13.如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4. (1)若M为AC的中点,求CF的长; (2)随着点M在边AC上取不同的位置, ①△PFM的形状是否发生变化?请说明理由; ②求△PFM的周长的取值范围. 17.如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP. (1)若m=4,n=3,且PQ⊥AB,求BP的长; (2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式. 第6页(共6页)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服