1、学号1251401243电气控制与可编程控制技术课 程 设 计(2012级本科) 题 目: 基于S7-200PLC的温度控制系统的设计系(部)院: 物理与机电工程学院 专 业: 电气工程及其自动化122班 作者姓名: 杨存恩 指导教师: 关虎昌 职称: 助教 完成日期: 2 0 1 5 年 6 月 20 日目录1 引言21.1 设计目的21.2 设计内容21.3 设计目标22 系统总体方案设计32.1 系统硬件配置及组成原理32.1.1 PLC型号的选择32.1.2 PLC CPU的选择32.1.3 EM235模拟量输入/输出模块42.1.4 传感器42.1.5 可控硅加热装置42.1.6 系
2、统组成原理图42.2 系统变量定义及分配表52.2.1 符号表52.2.2 I/O分配表62.3 系统接线图设计63 控制系统设计63.1 控制程序流程图设计 63.1.1 主程序73.1.2 子程序73.1.3 中断程序73.2 控制程序设计思路83.2.1 初次上电83.2.2 启动/停止阶段 93.2.3 主程序113.2.4 子程序113.2.5 中断程序,PID的计算134 上位监控系统设计144.1 PLC与上位监控软件通讯144.1.1 串行数据传送和并行数据传送144.1.2 异步方式与同步方式144.1.3 网络的通讯PPI协议15 4.2 上位监控系统组态设计164.2.1
3、 外部设备的定义164.2.2 定义数据变量164.2.3 数据类型165 结果分析176 结束语17参考文献18附录:带功能注释的源程序191 引言 1.1 设计目的温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。在许多场合,及时准确获得目标的温度、湿度信息是十分重要的。近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,能够在工业、农业等各领域中广泛使用。 1.2 设计内容主要是利用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温
4、度为为一定值,并能实现手动启动和停止,运行指示灯监控实时控制系统的运行,实时显示当前温度值。 1.3 设计目标 通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。2 系统总体方案设计 2.1 系统硬件配置及组成原理 2.1.1 PLC型号的选择 本温度控制系统采用德国西门子S7-200 PLC。S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成
5、网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。 2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中包括定数量的I/O端口,同时还可以扩展各种功能模块。S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。表2.1 S7-200系列PLC中CPU22X的基本单元型号输入点输出点扩展模块数量S7-200CPU221640S7-200CPU222
6、862S7-200CPU22424107S7-200CPU224XP24167S7-200CPU22624167 本设计采用CUP224。它具有24输入/16输出共40个数字量I/O点。可连接7个扩展模块,最大扩展至248路数字量I/O点或35 路模拟量I/O点。26K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功
7、能。可完全适应于一些复杂的中小型控制系统。CPU224模块的I/O配置及四肢分配主机模块0模块1模块2模块3CPU2244IN/4OUT8IN4AI/1AO4AI/1AOI0.0-I1.5/Q0.0-Q1.1I2.0-I2.3I3.0-I3.1AIW0/AQW0AIW8/AQW4I3.2-I3.3AIW2AIW10I3.4-I3.5AIW4AIW12I3.6-I3.7AIW6AIW14 2.1.3 EM235模拟量输入/输出模块 在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。在这里我们选择西门子的
8、EM235 模拟量输入/输出模块。EM235 模块具有4路模拟量输入/一路模拟量的输出。它允许S7-200连接微小的模拟量信号,80mV范围。用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。所有连到模块上的热电偶必须是相同类型。 2.1.4 传感器热电偶是一种感温元件,它直接测量温度,并把温度信号转换成热电动势信号。常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定
9、了其热电势与温度的关系、应答误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。本论文采用的是K型热电阻。 2.1.5 可控硅加热装置 对于要求保持恒温控制而不要温度记录的电阻炉采用带PID调节的数字式温度显示调节仪显示和调节温度,输出010mA作为直流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功
10、率,完全可以满足要求,投入成本低,操作方便直观并且容易维护。温度测量与控制是热电偶采集信号通过PID温度调节器测量和输出010mA或420mA控制触发板控制可控硅导通角的大小,从而控制主回路加热元件电流大小,使电阻炉保持在设定的温度工作状态。可控硅温度控制器由主回路和控制回路组成。主回路是由可控硅,过电流保护快速熔断器、过电压保护RC和电阻炉的加热元件等部分组成。 2.1.6 系统组成原理图 2.2 系统变量定义及分配表 2.2.1 符号表序号符号地址注释1特殊标志位存储器1SM0.0CPU运行时,该位始终为12特殊标志位存储器2SM0.1首次扫描时该位为13双字变量存储器1VD104将实数0
11、.4送入VD1044双字变量存储器2VD112将实数0.15送入VD1045双字变量存储器3VD116将实数0.1送入VD1046双字变量存储器4VD120将实数30.0送入VD1047双字变量存储器5VD124将实数0.0送入VD1048特殊标志位内存字节SMB34设置中断控制字节(SMB34=1009中断连接指令ATCH建立中断事件EVNT和程序INT10中断允许指令ENI条件成立时,允许所有中断事件11整数到双整数转换指令I_DI模拟量输入映像寄存器AIW0的值送入累加器AC012双整数到实数转换指令DI_R累加器AC0中的值转换后存入累加器AC013实数除法运算指令DIV_R累加器AC
12、0中的值除以32000后再送入AC014回路指令PID根据TBL中的输入VB108和配置信息对LOOP执行PID循环15实数乘法指令MUL_R双字变量存储器VD108中的内容与32000相乘结果送入累加器AC016实数到双整数转换指令ROUND累加器AC0中的值转换后存入累加器AC017双整数到整数转换指令DI_I累加器AC0中的值转换后存入累加器AC02.2.2 I/O分配表输入信号输出信号名称地址名称地址脉冲输入I0.1启动按钮停止按钮启动指示灯Q0.1停止指示灯Q0.2正常运行指示灯Q0.3温度越上限报警指示灯Q0.4加热指示灯Q0.5 2.3 系统接线图设计3 控制系统设计 3.1 控
13、制程序流程图设计 3.1.1 主程序运行PLC 初始化运行指示SM0.1始终为1调用子程序0 3.1.2 子程序设定温度值导入PID设定参数值每100ms调用一次中断程序中断返回 3.1.3 中断程序读入温度并转换把实际温度放入VD100调用PID命令物体的温度上升? N Y 停止加热 继续加热输出PID值 3.2 控制程序设计思路 3.2.1 初次上电1)读入模拟信号,并把数值转化显示锅炉的当前电压2)判断炉温是否在正常范围,打亮正常运行指示灯/温度越上限报警指示灯3.2.2 启动/停止阶段 启动过程:按下启动按钮后,开始标志位M0.1置位,M0.2复位。打开运行指示灯Q0.0,熄灭并停止指
14、示灯初始化PID。开始运行子程序0。 停止过程:按下停止按钮后,开始标志位M0.1复位,点亮停止指示灯,熄灭运行指示灯。并把输出模拟量AQW0清零,停止锅炉继续加热。停止调用子程序0,仍然显示锅炉温度。停止时模拟量输出清零,防止锅炉继续升温。 3.2.3 主程序 3.2.4 子程序 1)输入设定温度。 2)把设定温度、P值、I值、D值都导入PID 3)每100ms中断一次子程序进行PID运算。 3.2.5 中断程序,PID的计算 1) 模拟信号的采样处理,归一化导入PID。2) DIP程序运算。3)输出DIP运算结果,逆转换为模拟信号。4 上位监控系统设计4.1 PLC与上位监控软件通讯 4.
15、1.1 串行数据传送和并行数据传送 1) 并行数据传送:并行数据传送时所有数据位是同时进行的,以字或字节为单位传送。并行传输速度快,但通信线路多、成本高,适合近距离数据高速传送。 2) 串行数据传送:串行数据传送时所有数据是按位(bit)进行的。串行通信仅需要一对数据线就可以。在长距离数据传送中较为合适。 PLC网络传送数据的方式绝大多数为串行方式,而计算机或PLC内部数据处理、存储都是并行的。若要串行发送、接收数据,则要进行相应的串行、并行数据转换,即在数据发送前,要把并行数据先转换成串行数据;而在数据接收后,要把串行数据转换成并行数据后再处理。 4.1.2 异步方式与同步方式 根据串行通信
16、数据传输方式的不同可以分为异步方式和同步方式。 1) 异步方式:又称起止方式。它在发送字符时,要先发送起始位,然后才是字符本身,最后是停止位。字符之后还可以加入奇偶校验位。异步传送较为简单,但要增加传送位,将影响传输速率。异步传送是靠起始位和波特率来保持同步的。 2) 同步方式:同步方式要在传送数据的同时,也传递时钟同步信号,并始终按照给定的时刻采集数据。同步方式传递数据虽提高了数据的传输速率,但对通信系统要求较高。 PLC网络多采用异步方式传送数据。 4.1.3 网络的通讯PPI协议 PPI是一种主从设备协议:主设备给从属装置发送请求,从属装置进行响应。从属装置不发出讯息,而是一直等到主设备
17、发送请求或轮询时才作出响应。 主设备与从属装置的通讯将通过按PPI协议进行管理的共享连接来进行。图41 如果在用户程序中激活PPI主设备模式,则S7-200 CPU在处于RUN(运行)模式时可用作主设备。激活PPI主设备模式之后,可使用“网络读取”或“网络写入”指令从其它S7-200读取数据或将数据写入其它S7-200。当S7-200用作PPI主设备时,它将仍然作为从属装置对来自其他主设备的请求进行响应。 对于简单的单台主设备网络,编程站和S7-200 CPU既可以通过PPI多台主设备电缆连接,也可以通过安装在编程站中的通讯处理器(CP)卡连接。 在图上部的范例网络中,编程站(STEP7-Mi
18、cro/WIN)是网络主设备。在图下部的范例网络中,人机界面(HMI)设备(例如TD 200、TP或OP)是网络主设备。 在两个范例网络中,S7-200 CPU是对主设备的请求进行响应的从属装置。图42 单台主设备PPI网络 4.2 上位监控系统组态设计 4.2.1 外部设备的定义 组态王把那些需要与之交换数据的硬件设备或软件程序都做为外部设备使用。外部硬件设备在本文中就是PLC S7-200。可使用“设备配置向导”一步步完成设备的连接。 4.2.2 定义数据变量 要实现组态王对S7-200的在线控制,就必须建立两者之间的联系,那就需要建立两者的数据变量。基本类型的变量可以分为“内存变量”和“
19、I/O变量”两类。内存变量是组态王内部的变量,不跟监控设备进行交换。而I/O变量时两者之间互相交换数据的桥梁,S7-200和组态王的数据交换是双向的,一者的数据发生变化,另外一者的数据也跟着变化。所以需要在创建连接前新建一些变量。 本文中,PLC用内存VD0来存放当前的实际温度。并规定温度超过105为温度过高,立即要作出相应警示信号。 点击工程管理器中的“数据词典”再双击右边窗口的新建,在出现的定义变量口中填写相应的要求项,并可在“报警定义”中设定报警。 4.2.3 数据类型 只对I/O类型的变量起作用,共有9种类型: Bit:1位, 0或1 Byte:8位, 一个字节 Short:16位,
20、2个字节 Ushort:16位, 2个字节 BCD:16位, 2个字节 Long:32位, 4个字节 Long BCD:32位, 4个字节 Float:32位, 4个字节 String:128个字符长度5 结果分析 本课题设计了基于PLC的温度控制系统。 PLC(可编程控制器) 以其可靠性高、抗干扰能力强、编程简单、功能强大、性价比高、体积小、能耗低等显著特点广泛应用于现代工业的自动控制之中。 PID闭环控制是控制系统中应用很广泛的一种控制算法,对大部分控制对象都有良好的控制效果。 该温度控制系统也有一些有不足的地方需要改进,编程时我们用了编程软件自带的PID指令向导模块,这样虽然方便,但是使
21、得控制系统超调量和调节时间都稍微偏大,若不直接调用该模块,而是自己编写PID控制子程序的话,控制效果可能会更好。日后,随着对PLC硬件系统和通信方式的深入了解,还可以丰富远程控制指令,以应对运行过程中的各种突发事件,增加其他PLC,通过构建复杂的多级网络适应大型的工业控制,使该系统运行时更加稳定可靠,性能更加完善。6 结束语 课程设计是我们专业课程知识综合应用实践的课程设计是我们专业课程知识综合应用的实践训练,着是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天
22、能稳健地在社会大潮中奔跑打下坚实的基础. 通过这次模具设计,本人在多方面都有所提高。在这次设计过程中,体现出自己单独设计模具的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。 在此感谢我们的关老师,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的每个实验细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们
23、的批评与指正,本人将万分感谢。参考文献1 SIMATIC S7-200可编程序控制器系统手册M.北京:机械工业出版社,2002. 2 Frank.D.Petruzella.PLC教程(第三版)M.北京:人民邮电出版社,2007. 3 西门子(中国)有限公司.深入浅出西门子S7-200PLC(第三版)M.北京: 北京航空航天大学出版社,2007. 4 陈建明.电气控制与PLC应用M.北京:电子工业出版社,2009. 5 郑凤翼,金沙.图解西门子S7-200系列PLC应用88例J.北京:电子工业出 版社,2009. 6 袁任光.可编程序控制器选用手册M.北京:机械工业出版社,2002. 7 戴仙金
24、.西门子S7-200系列PLC应用与开发M.中国水利水电出版社,2007. 8 柳梁.编程控制器(PLC)入门PLC及其硬件组成J.计算机时代,1996(5). 9 毛联杰.S7-300系列PLC与组态软件Wincc实现通信的方法J.国内外机电 一体化技术,2006(4). 10 曲还波.有效扩展可编程控制器I/O的实用方法J.设备管理与维修,2007. 11 焦海生.可编程程序控制器梯形图的顺序控制设计J.内蒙古电大学 刊,2006(6). 12 赵玉英.可编程控制器在电器控制系统中的应用J.河南科技学院学报, 2006(3). 13 张仑.可编程序控制器中PID控制的研究J.电子电气教学学
25、报,2005(3). 14 谢克明,夏路易.可编程控制器原理与程序设计M.北京:电子工业出版 社,2002. 15 赵阳.西门子S7-300PLC及工控组态软件Wincc的应用J.北京:电子工业 出版社,1997. 16 丁镇生.传感器及传感技术应用M.北京:电子工业出版社,1998. 17 王永华.现代电气控制及PLC应用技术M北京:北京航天航空大学出版 社,2007. 18 马小军.可编程控制器及应用M.南京:东南大学出版社,2007. 附录:带功能注释的源程序20PLC程设计成绩评定表姓 名 杨存恩 学 号 1251401243专业班级 电气工程及其自动化122班 课程设计题目: 基于S7-200PLC的温度控制系统的设计成绩评定依据:评 定 项 目评 分 成 绩1.设计方案可行性及其选优(20分)2.设计过程及结果(40分)3.平时成绩(态度认真、遵守纪律)(10分)4.设计报告的规范性、参考文献(不少于5篇)(10分)5.答辩(20分)总 分最终评定成绩(以优、良、中、及格、不及格评定) 指导教师签字: 年 月 日22