收藏 分销(赏)

徐SIR最赞的一篇调研报告堪称模板.doc

上传人:人****来 文档编号:4458385 上传时间:2024-09-23 格式:DOC 页数:37 大小:4.36MB
下载 相关 举报
徐SIR最赞的一篇调研报告堪称模板.doc_第1页
第1页 / 共37页
徐SIR最赞的一篇调研报告堪称模板.doc_第2页
第2页 / 共37页
点击查看更多>>
资源描述
徐SIR最赞的一篇调研报告堪称模板 37 2020年4月19日 文档仅供参考,不当之处,请联系改正。 “压缩空气蓄能(CAES)+风电”国内外研究情况调研报告 刘文毅,徐钢,田龙虎,李乐,李守成 1. 背景 压缩空气蓄能(CAES)是一个重要的电网调峰技术路线。随着可再生能源特别是风电的飞速发展,CAES的诸多优良性能体现出与风电等可再生能源结合的巨大潜力。 众所周知,随着中国再生能源发展战略的实施,可再生能源发电特别是风电在电力供应中的比重逐步增加,但可再生能源(特别是风能)的间歇性限制了其大规模发展,据报道当前风电装机容量迅速增长,但电网已越来越无法接纳这些不连续、随意性强的风电资源,从而导致不少风电场不能。为解决这一问题,当前主要有两种途径:一是有些地方考虑在建设风电同时,大规模建设10倍左右容量的传统煤粉火电机组,但这样一来风电作为可再生能源带来的环境收益会被这大量同时建设的传统煤粉电站彻底抵消;二是当前正在发展的智能电网,智能电网据报道有可能有效地接纳一定容量的风电,但这是经过优化电网侧的配置来实现的,风电仍被视为一种不连续、随意的难以消纳的“垃圾电”来接受的。且由于风电的不连续性、随意性,与电网有规律的、越来越大的峰谷差之间的根本矛盾没有缓解。随着风电装机的进一步扩大,风电并网困难的问题可能无法根本避免。 而如果CAES与风电进行有效的结合,其意义非常重大:第一,从根本上解决风电不连续、随意性强的特点,将原来电网避之唯恐不及的所谓“垃圾电”变为宝贵的深受电网欢迎的调峰电力,有利于电网的稳定运行,彻底改变风电上网的瓶颈。第二,电能的价值大大提高,有望进一步改进风电场的经济性能,降低风电的发电成本,提高风电的竞争力。第三,随着风电发电成本降低、上网瓶颈被打破,有望彻底改变风电只能作为辅助发电方式的现状,推动风电的进一步快速可持续发展,为中国可再生能源发展战略以及节能减排战略的实施奠定理论基础与技术支撑。 我们课题组是国内首先研究压缩空气蓄能(CAES)的研究机构,申请了首个该方向的基金课题、完成了首个该方向的博士论文,当前该方向的主要有价值的学术论文很多都出自我们课题组(参见后面的国内研究情况分析)。有鉴于此,我们计划在此基础上继续开展“压缩空气蓄能(CAES)+可再生能源”的深入研究。这份调研报告既是确定研究方案的重要依据,也可作为未来发表论文、申请项目的重要数据来源。 2. 国内外研究情况 2.1 国内调研情况: (1)调研数据库说明 国内研究情况调研涉及数据库是:中国学术期刊全文数据库(CNKI) ,该数据库文献总量达7242万篇。文献类型包括:学术期刊、博士学位论文、优秀硕士学位论文;期刊方面包含有当前国内的8000多种期刊的相关论文。能够涵盖本专业的主要出版物。 (2)调研结果: ü 检索词是:“压缩空气蓄能” ü 检索方案是:所有题目中包含“压缩空气蓄能”的学术期刊。 ü 检索结果: 共发现27篇相关论文报道,但其中有13篇只是简讯,如介绍德国等国家建设了蓄能电站的简讯,100字左右,不具备学术调研的价值; 剩余14篇论文的研究内容大致情况如下图所示: 图1 国内关于CAES学术论文的研究内容分析 在这14篇文章当中,只有一篇综述文章提到了美国有风电与压缩空气蓄能一体化项目,其它都没有设计风电等新能源电站。 另外,比较有学术价值的3篇集成优化和2篇经济性分析的论文都来自于本课题组的刘文毅老师和杨勇平老师。 (3)调研结论: 经过调研,基本能够发现以下几点: ① 当前国内的CAES研究尚处于起步阶段,对“CAES+风电”的研究几乎为空白。 ② 对于CAES国内研究比较深入的当前还是我们课题组,主要是刘文毅老师和杨勇平老师在系统建模、技术经济分析方面具有绝对领先优势。 ③ CAES中采用燃料主要还是天然气,采用的热集成方式主要是回热。几乎没有涉及联合循环和煤气化等研究内容。 2.2 国外调研情况: (1)调研数据库说明: 本次调研主要针对三个权威数据库: (1) Elsevier ScienceDirect数据库 (2) I EEE/IET Electronic Library (IEL) 数据库 (3) 美国机械工程师学会期刊数据库(ASME) (2)调研结果: ü 检索词为:①compressed air energy storage; ②wind; ü 检索方案是:所有题目、关键词和摘要中包含“compressed air energy storage”和“wind”的学术期刊。 ü 检索结果: 对检索到的文献进行阅读与整理,共有24篇文献与本课题相关。对这24篇文献的系统集成方式以及研究内容进行分析,如图2和图3所示: 图2 CAES系统集成方法分析 注:其它是指没有介绍具体技术,只是提到了CAES与风能的结合的综述类论文。 图3 论文研究内容分析 (3)调研结论: 根据调研的结果,我们发现: ① 国际上对CAES研究比较深入,相关论文达数百篇之多,但对“CAES+风电”的研究仍处于起步阶段,当前有几十篇论文与此相关,且大多都是在最近5年内发表,体现“CAES+风电”正逐渐成为国际学术界研究热点。 ② 研究内容上与国内期刊大多介绍性和综述类不同,系统模拟、佣分析和技术经济分析合计占80%左右。 ③ 燃料方面:还是偏重于天然气(燃气轮机和联合循环占80%左右),极少数使用沼气和生物质气化;煤气化的几乎没有报道,这可能是由于能源结构引起的。但这也表明:适合于中国国情的、以煤气化为燃料的“CAES+风能”研究当前几乎是空白。 ④ 系统热集成方面:主要采用燃机回热,采用联合循环的比较少。 3. 结论及研究思路探讨: 综合国内外研究现状能够发现: (1) 国内CAES研究尚处于起步阶段,对“CAES+风电”的研究几乎为空白。国际上对CAES研究比较深入,相关论文达数百篇之多,但对“CAES+风电”的研究仍处于起步阶段。再综合“CAES+风电”对中国可再生能源发展的深远影响,现在开展“CAES+风电”研究意义重大、预期研究成果丰富。 (2) 国内外CAES研究在燃料方面当前都侧重天然气(燃气轮机和联合循环占80%左右),更适合于中国国情的、以煤气化为燃料的“CAES+风能”研究当前几乎是空白。当然,煤气化由于其系统的复杂性是否适合于CAES系统还需进行学术上的研究与讨论。 (3) 系统热集成方面:主要采用燃机回热,采用联合循环的比较少。考虑到联合循环热集成手段更丰富、效率更高,因此未来研究可考虑将联合循环作为研究重点。 有鉴于此,我们初步设计研究思路如下: 1. 基于中国背景的“CAES+风电”系统建模、技术经济分析。相关研究成果可汇总发表2~3篇国内学术期刊(电机工程学报or工程热物理学报)。 2. 结合中国国情,开展“CAES+风能”深入研究,重点是:煤气化与CAES结合的可能性、将联合循环作为系统集成主要方式,全面开展系统建模、优化集成以及技术经济分析等研究。相关研究成果可考虑发表国际期刊论文多篇,并考虑申请相关专利。 3. 在此基础上,探讨“CAES+风能”与煤+生物质多联产的可能的集成思路。相关研究成果可考虑发表国际期刊论文多篇,并考虑申请相关专利。 4. 研究重点区域,如内蒙古等既有丰富风能资源,又有大量煤炭资源的地区发展“CAES+风能”带来的战略意义,进一步将相关研究提升到战略层面。 附录1. 14篇国内CAES相关论文列表: [1] 郭新生,傅秦生,赵知辛,郭中纬. 电热冷联产的新压缩空气蓄能系统[J].热能动力工程, ,20(2):170—173. [2] 王亚林,陈光明,王勤.压缩空气蓄能系统应用于低温制冷性能分析[J].工程热物理学报, ,29(2):1998— . [3] 陶芒.压缩空气蓄能电站的比较优势和市场前景.科技财富, .11:26—27. [4] 刘文毅,杨勇平. 压缩空气蓄能电站综合效益评价研究[J].工程热物理学报, ,28(3):373—375. [5] 施慧聪,张炯. 压缩空气蓄能及其它蓄能技术在美国的应用.华东电力, ,37(2):291—294. [6] 刘文毅,杨勇平,张昔国,辛以波. 压缩空气蓄能(CAES) 电站及其现状和发展趋势.山东电力技术, 第2期:10—14. [7] 周波.大型压气蓄能发电系统的开发.电工3.15专辑:43—45. [8] 孔旭. 压缩空气蓄能发电技术如何提高电站经济效益. 科技财富, .11:28—29. [9] 杨 联合循环电站采用压缩空气蓄能可使发电功率加倍.上海大中型电机, ,NO.3:46—49. [10] 宋卫东. 国外压缩空气蓄能发电概况. 中 国 电 力,1997(9):53—54. [11] 刘文毅, 杨勇平. 微型压缩空气蓄能系统静态效益分析与计算. 华北电力大学学报, ,34(2):1—3. [12] 刘文毅,杨勇平.用于分布能量系统的微型压缩空气蓄能(MCAES)系统性能计算与优化.工程热物理学报, ,27(2):911—913. [13] 刘文毅,杨勇平,宋之平.压缩空气蓄能(CAES)系统集成及性能计算. 工程热物理学报, ,26:25—28. [14] 刘文毅,杨勇平. 压缩空气蓄能(CAES)电站热力性能仿真分析.博士论文. 附录2. 国外“CAES+风能”论文简介: ² 具体数据库搜索方式说明: Elsevier ScienceDirect数据库 19 articles found for: TITLE-ABSTR-KEY(compressed air energy storage) and TITLE-ABSTR-KEY(wind) 20 articles found for: TITLE-ABSTR-KEY(compressed air energy storage) and TITLE-ABSTR-KEY(RENEWABLE energy) 剔除重复与相关性很低的,共有15篇相关论文 IEEE/IET Electronic Library (IEL) 数据库 You searched for: (((((Abstract:compressed) AND Abstract:air) AND Abstract:energy) AND Abstract:storage) AND Abstract:wind) 14篇文献,剔除重复与相关性很低的,共有5篇相关论文 美国机械工程师学会期刊数据库(ASME) 在Abstract内搜索: “compressed and storage and wind” 共搜到9篇,4篇有我们所需要的关键词(reheat, combined cycle),学校内网不能下载全文,从摘要中看主要是涉及回热和联合循环(摘要中已经标出) ² 相关论文列表及说明: 1、 LiWang, Dong-Jing Lee, Wei-Jen Lee, Zhe Chen, Analysis of a novel autonomous marine hybrid power generation / energy storage system with a high-voltage direct current link, Journal of Power Sources, ,1284–1292 一个庞大复杂而又细致的系统模拟,对CAES的利用没有具体讲燃气轮机。包括了:wind-turbine generators, diesel-engine generators, fuel cells, and wave-energy turbine generators, a compressed air energy storage system, and a flywheel energy storage system. 2、 D. Zafirakis, J.K. Kaldellis, Autonomous dual-mode CAES systems for maximum wind energy contribution in remote island networks, Energy Conversion and Management 只有简单循环+回热,做的比较深,从能量回收与消耗角度,分很多情景做的模拟。 3、 Jeffery B. Greenblatt, Samir Succar, David C. Denkenberger, Robert H. Williams, Robert H. Socolow, Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy, , 1474–1492 CAES运用的是回热,从煤耗角度进行分析和比较了wind+gas, wind+CAES, CC, 和IGCC+CCS,传统电厂。Robert H. Williams作者。经济性分析 4、 Septimus van der Linden, Bulk energy storage potential in the USA, current developments and future prospects, Energy, ,3446–3457 广泛的讲了多种蓄能方式,提到了GT,CC,IGCC,没有具体分析。 5、 Martin Pehnt, Michael Oeser, Derk J. Swider,Consequential environmental system analysis of expectedoffshore wind electricity production in Germany,Energy 747–759 提到CAES采用的是联合循环(CC) 经济性分析 6、 Alfred Cavallo,Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES),Energy 120–127 Princeton的作者。综述性文章,只研究了CAES系统。间歇性风力发电能够转化为一个混合风可控电源/压缩空气蓄能(CAES用)的系统。没有提到CAES的具体方式,没有IGCC等关键词。 7、 D. Zafirakis, J.K. Kaldellis,Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks,Energy Policy, , 1958–1969 与2类似,以希腊的小岛为例子,采用的也是简单循环,只有gas turbine,有回热利用。模拟集成优化 8、 Paul Denholm, Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage, Renewable Energy 1355–1370 CAES用到的是生物质气化,根本上降低排放。以下是气化系统。模拟集成 9、 Henrik Lund, Georges Salgi, Brian Elmegaard, Anders N. Andersen,Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices,Applied Thermal Engineering 799–806 没有风电一体化的内容,中间过程没有写,注重的是效率和投入的资金,只有CAES+GT 10、 H. Ibrahim, R. Younès, A. Ilinca, M. Dimitrova, J. Perron,Study and design of a hybrid wind–diesel-compressed air energy storage system for remote areas,Applied Energy 1749–1762 烧柴油,只有回热,系统庞大,分析完善,模拟集成 11、 Georges Salgi, Henrik Lund,System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources,Applied Energy 182–189 以丹麦风电为研究对象,少量涉及有热电联产的内容,没有具体的CAES方法,没有IGCC。 经济性研究 12、 Paul Denholm, RamteenSioshansi,The value of compressed air energy storage with wind in transmission- constrained electric power systems,Energy Policy 3149–3158 传统的燃气轮机,经过一个空气透平和一个燃气透平。经济性分析 13、 Y.M. Kim, D. Favrat,Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system,Energy 213–220 对CAES的能量和火用的分析。只提到了用间歇式的可再生能源,主要在火用分析上。多级压缩带冷却,多级膨胀带回热。 14、 H. Ibrahim, A. Ilincaa, J. Perron,Energy storage systems—Characteristics and comparisons,Renewable and Sustainable Energy Reviews 1221–1250 介绍了许多种能量的储存,其中,CAES给了一些参数(压力等)(GT)。 15、 Paul Denholm, Gerald L. Kulcinski,Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems,Energy Conversion and Management 2153–2172 其中一节提到了CAES,没有提到利用可再生能源;用的是天然气燃料,有回热,全生命周期过程。经济性 16、题目:Compressed Air Energy Storage in an Electricity System With Significant Wind Power Generation 作者:Derk J. Swider 期刊:IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 22, NO. 1 时间:MARCH 普通的air turbine膨胀,在压缩空气膨胀之前,要进行热量的回收(heat recovery),有回热。经济性 17、题目:Concepts for the improved integration of wind power into the German interconnected system 作者:P. Siemes1 H.-J. Haubrich2 H. Vennegeerts2 S. Ohrem1 期刊:Published in IET Renewable Power Generation Special issue - selected papers from EWEC 时间:Received on 31st July Revised on 12th December 针正确是一个已建的德国风力发电厂,加上CAES,都用wind turbine,没有回热。集成模拟 18、题目:Optimised Autonomous Power System 作者:P. LOMBARDI, P. VASQUEZ, Z.A. STYCZYNSKI(德国) 出处:power and energy society 在多级压气机中,内部冷却器减少了在压缩过程中的耗能,在压缩完后的一个冷却器用来减少储存体积。用的是天然气的turbine,也提到了biogas(沼气)turbine,有热交换,利用存储的相变的热量来加热出口空气。模拟集成 19、题目:STORAGE OF FLUCTUATING WIND ENERGY 作者:Dr. Edwin Lerch(德国) 利用一部分产生的电能和wind park里的风能。 用电来压缩,没有热回收 用电来压缩空气,有一次热交换,交换的是在GT中出来的气体和压缩气体之间的热量 有热交换,储存压缩空气相变的热量,与出口空气进行热交换,集成优化 20.题目:Study of a Hybrid Wind-Diesel System with Compressed Air Energy Storage 作者:Hussein Ibrahimab, Adrian Ilincaa, Rafic Younesc, Jean Perronb, Tammam Basbousa 出处: IEEE Canada Electrical Power Conference 多个模型,包括压缩一次,有热交换;压缩两次,有热交换。 21.Running the World on Renewables: Hydrogen Transmission Pipelines With Firming Geologic Storage ASME Power Conference (POWER ) July 22–24, , Lake Buena Vista, Florida, USA Sponsor: Power Division Author(s): William C. Leighty The Leighty Foundation, Juneau, AK ABSTRACT:The world's richest renewable energy resources — of large geographic extent and high intensity — are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver the energy. The energy output of most renewables varies greatly, at time scales of seconds to seasons: the energy capture assets thus operate at inherently low capacity factor (CF); energy delivery to end-users is not “firm”. New electric transmission systems, or fractions thereof, dedicated to renewables, will suffer the same low CF, and represent substantial stranded capital assets, which increases the cost of delivered renewable-source energy. Electric energy storage cannot affordably firm large renewables at annual scale. At gigawatt (GW = 1,000 MW) scale, renewable-source electricity from diverse sources, worldwide, can be converted to hydrogen and oxygen, via high-pressure-output electrolyzers, with the hydrogen pipelined to load centers (cities, refineries, chemical plants) for use as vehicle fuel, combined-heat-and-power generation on the retail side of the customers' meters, ammonia production, and petroleum refinery feedstock. The oxygen byproduct may be sold to adjacent dry biomass and / or coal gasification plants. Figures 1–3. New, large, solution-mined salt caverns in the southern Great Plains, and probably elsewhere in the world, may economically store enough energy as compressed gaseous hydrogen (GH2) to “firm” renewables at annual scale, adding great market and strategic value to diverse, stranded, rich, renewable resources. Figures 2 and 3. For example, Great Plains, USA, wind energy, if fully harvested and “firmed” and transmitted to markets, could supply the entire energy consumption of USA. If gathered, transmitted, and delivered as hydrogen, about 15,000 new solution-mined salt caverns, of ~8 million cubic feet (225,000 cubic meters) each, would be required, at an incremental capital cost to the generation-transmission system of ~5%. We report the results of several studies of the technical and economic feasibility of large-scale renewables — hydrogen systems. Windplants are the lowest-cost new renewable energy sources; we focus on wind, although concentrating solar power (CSP) is probably synergistic and will become attractive in cost. The largest and richest renewable resources in North America, with high average annual windspeed and sunlight, are stranded in the Great Plains: extant electric transmission capacity is insignificant relative to the resource potential. Large, new, electric transmission systems will be costly, difficult to site and permit, and may be difficult to finance, because of public opposition, uncertainties about transmission cost recovery, and inherently low CF in renewables service. The industrial gas companies' decades of success and safety in operating thousands of km of GH2 pipelines worldwide is encouraging, but these are relatively short, small-diameter pipelines, and operating at low and constant pressure: not subject to the technical demands of renewables-hydrogen service (RHS), nor to the economic challenge of delivering low-volumetric-energy-density GH2 over hundreds or thousands of km to compete with other hydrogen sources at the destination. The salt cavern storage industry is also mature; several GH2 storage caverns have been in service for over twenty years; construction and operating and maintenance (O&M) costs are well understood; O&M costs are low. 22. Integrating Wind Turbine Generators (WTG's) With GT-CAES (Compressed Air Energy Storage) Stabilizes Power Delivery With the Inherent Benefits of Bulk Energy Storage ASME International Mechanical Engineering Congress and Exposition (IMECE ) November 11–15, , Seattle, Washington, USA Sponsor: ASME Author(s): Septimus van der Linden BRULIN Associates LLC, Chesterfield, VA ABSTRACT:The installed capacity of WTG's in the US and worldwide, while impressive, suffers from a low capacity factor of 30% or less due to the variability of wind as the motive force. Installing larger wind farms to cover the deficiency of capacity results in high costs per delivered kW/hr. This begs for continued tax incentives to deliver “green” energy to the consumers. The full capability of the WTG is never realized as, at high wind speeds, some of the wind energy has to be “spilled” to maintain a smooth delivery profile. Technology improvements have not overcome the “wasted” capacity of these modern marvels except where Hydro or Pumped Hydro Storage (PHS) facilities are utilized. The Hydro power station can compensate for wind variability while PHS provides energy storage and delivers power during high demand periods. Wind Energy Storage results in a much higher capacity factor, in effect reducing the cost of delivered kW/hrs. The problem with this excellent solution is that the USA or the worldwide installation of WTG's do not have such facilities readily available, are expensive to construct and difficult to permit in the USA. A readily available, cost effective alternative bulk-energy storage technology is ready for deployment throughout most of the continental USA. The GT-CAES concept incor
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 应用文书 > 报告/总结

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服