资源描述
七年级数学上册1.1生活中的图形月考试卷(word可编辑)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、已知下图为一几何体的从三个不同方向看的形状图,若从正面看的长方形的长为 ,从上面看的等边三角形的边长为 ,则这个几何体的侧面积是( )
A . B . C . D .
2、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
3、下列立体图形中,只由一个面围成的是( )
A .正方体 B .圆锥 C .圆柱 D .球
4、下列说法中,
⑴联结两点的线段叫做两点之间的距离;(2)用度量法和叠合法都可以比较两个角的大小;(3)铅垂线、三角尺、合页型折纸都可以检验直线和平面垂直:(4)六个面、十二条棱和八个顶点组成的图形都是长方体;你认为正确的个数为…( )
A .1个 B .2个 C .3个 D .4个
5、下列图形中,不可以作为一个正方体的展开图的是( )
A . B . C . D .
6、下列几何体中与其余三个不属于同一类几何体的是( )
A . B . C . D .
7、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
8、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
9、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )
A .37 B .33 C .24 D .21
10、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
11、长方形纸板绕它的一条边旋转1周形成的几何体为( )
A .圆柱 B .棱柱 C .圆锥 D .球
12、下列立体图形含有曲面的是( )
A . B . C . D .
13、一个物体的外形是长方体(如图(1)),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )
A .圆柱 B .球 C .圆锥 D .圆柱或球
14、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
15、下列说法中正确的是( )
A .四棱锥有4个面
B .连接两点间的线段叫做两点间的距离
C .如果线段 ,则M是线段AB的中点
D .射线 和射线 不是同一条射线
16、下列几何体,都是由平面围成的是( )
A .圆柱 B .三棱柱 C .圆锥 D .球
17、下列图形中,不是柱体的是( )
A . B . C . D .
二、填空题(每小题2分,共计40分)
1、如图所示的长方体,用符号表示下列棱的位置关系:A1B1 AB,AA1 BB1 , A1D1 C1D1 , AD BC.
2、如图,在正方体中,与线段AB平行的线段有 .
3、已知长方形长为5,宽为2,将其绕它的一条边所在的直线旋转一周,得到一个几何体,该几何体的体积为 .(结果保留 )
4、如图,由几个边长为1的小立方体所组成的几何体,从上面看到的形状图如图所示,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为 .
5、一个长方形的长和宽分别为5、4,绕它的一边所在的直线旋转一周所形成的几何体的体积0 (结果保留π)
6、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
7、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 .
8、如图,一个长方体的表面展开图中四边形ABCD是正方形 正方形的四个角都是直角、四条边都相等 ,则根据图中数据可得原长方体的体积是 .
9、如图中的几何体有 个面,面面相交成 线.
10、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是 .
11、一个正方体有 个面.
12、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .
13、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .
14、一个圆绕它的直径旋转一周形成的几何体是 .
15、流星划过天空时留下一道明亮的光线,用数学知识解释为 .
16、如图,一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为 平方分米.
17、一个棱锥共有7个面,这是 棱锥,有 个侧面.
18、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 .
19、将下列几何体分类,柱体有: (填序号).
20、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是 .
三、计算题(每小题2分,共计6分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
四、解答题(每小题4分,共计20分)
1、把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为484 cm2 , 那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2 , 求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
2、观察图中的立体图形,分别写出它们的名称.
3、如图1,已知直角三角形两直角边的长分别为3和4,斜边的长为5
(1)试计算该直角三角形斜边上的高.
(2)按如图2、3、4三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积(结果保留π).
4、如图所示,有一个长为4cm、宽为3cm的长方形.
(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.
(2)在你画出的这两个几何体中,哪个体积大?
5、已知长方体ABCD﹣EFGH中的三条棱如图所示,请补画出这个长方体的直观图.
展开阅读全文