资源描述
北师大版七年级数学上册平时训练试卷【不含答案】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
2、将下图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
3、已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A .10 cm2 B .5π cm2 C .10π cm2 D .16π cm2
4、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( )
A . B . C . D .
5、下列图形中,不可以作为一个正方体的展开图的是( )
A . B . C . D .
6、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
7、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )
A .点动成线 B .线动成面 C .面动成体 D .以上都不对
8、下列几何体中,面的个数最多的是( )
A . B . C . D .
9、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
10、按面划分,与圆锥为同一类几何体的是( )
A .正方体 B .长方体 C .球 D .棱柱
11、长方形纸板绕它的一条边旋转1周形成的几何体为( )
A .圆柱 B .棱柱 C .圆锥 D .球
12、下面四个立体图形中,只由一个面就能围成的是( )
A . B . C . D .
13、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
14、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )
A . B . C . D .
15、如图,已知长方体ABCD﹣EFGH,在下列棱中,与棱GC异面的( )
A .棱EA B .棱GH C .棱AB D .棱GF
二、填空题(每小题4分,共计20分)
1、长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 (结果保留π).
2、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是 .
3、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .
4、边长为2㎝的正方体有 个面 , 个顶点, 条边,表面积是 cm2 .
5、流星划过天空时留下一道明亮的光线,用数学知识解释为 .
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
五、解答题(每小题4分,共计32分)
1、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=πR3 , V圆锥=πr2h).
(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是什么?.
(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?
(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?
2、从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:
(1)这个零件的表面积(包括底面);
(2)这个零件的体积.
3、把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为8cm,宽为6cm的长方形,绕它的一条边所在的直线旋转一周后,你能计算出所得圆柱体的体积吗?(结果保留π)
4、如图所示,请将下列几何体分类.
5、下图是长方体的表面展开图,将它折叠成一个长方体.
(1) 哪几个点与点 重合?
(2) 若 , , ,求这个长方体的表面积和体积.
6、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(π=3.14)
7、把图中图形绕虚线旋转一周,指出所得几何体与下面A~E中几何体的对应关系.
8、如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形.
展开阅读全文