1、北师大版七年级数学上册期末试卷(可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、在下列立体图形中,只要两个面就能围成的是( )A . B . C . D .2、将下左图中的三角形绕虚线旋转一周,所得的几何体是( ).A . B . C . D .3、围成下列立体图形的各个面中,每个面都是平的是( )A .长方体 B .圆柱体C .球体 D .圆锥体4、一个物体的外形是长方体(如图(1),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )A .圆柱 B .球 C .
2、圆锥 D .圆柱或球5、下图是由( )图形饶虚线旋转一周形成的A . B . C . D .6、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着旋转7、下列图形绕虚线旋转一周,便能形成圆锥体的是()A . B . C . D .8、下列几何体,都是由平面围成的是( )A .圆柱 B .三棱柱 C .圆锥 D .球9、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )A .12 B .15 C .12+6 D .15+1210、如图,一个正方体的六个面上分别标有数字1,2,
3、3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )A .1 B .2 C .3 D .611、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A . B . C . D .12、将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A . B . C . D .13、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。A .208 B .148 C .128 D .18814、有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体
4、图形的内、外表面的总面积是 ( )A .192 B .216 C .218 D .22515、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有6条棱,则该模型对应的立体图形可能是( )A .四棱柱 B .三棱柱 C .四棱锥 D .三棱锥二、填空题(每小题4分,共计20分)1、如图所示为8个立体图形其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 2、如图,在长方体ABCDEFGH中,与面ADHE与面ABFE都垂直的面是 3、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留)
5、4、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.5、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .三、判断题(每小题2分,共计6分)1、体是由面围成的( )2、棱柱侧面的形状可能是一个三角形。( )四、计算题(每小题4分,共计12分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是
6、圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积五、解答题(每小题4分,共计32分)1、10个棱长为acm的正方体摆放成如图的形状,这个图形的表面积是多少?2、如图所示是长方体的表面展开图,折叠成一个长方体,若AE=FH=14cm,FG=2cm,则该长方体的表面积和体积分别是多少?3、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2, 那么这根木料本来的体积
7、是多少?4、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)5、从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积6、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体(1) 这个几何体由个小正方体组成(2) 在下面网格中画出左视图和俯视图.(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.7、如图,梯形ABCD中,ABCD,ABC=90,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQDP,使得PQ交射线BC于点E,设AP=x当x为何值时,APD是等腰三角形?若设BE=y,求y关于x的函数关系式;若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C8、如图,上面一行是一些具体的实物图形,下面一行是一些立体图形,试用线连接立体图形和类似的实物图形