资源描述
北师大版七年级数学上册课后练习试卷
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、把一枚硬币在桌面上竖直快速旋转后所形成的几何体是( )
A .圆柱 B .圆锥 C .球 D .正方体
2、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
3、下列几何体中,其主视图是曲线图形的是( )
A . B . C . D .
4、下列几何体中,圆柱是( )
A . B . C . D .
5、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
6、下列图形中不是立体图形的是( )
A .圆锥 B .圆柱 C .长方形 D .棱柱
7、一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为( )
A . B . C . D .
8、十个棱长为 的正方体摆放成如图的形状,这个图形的表面积是( )
A . B . C . D .
9、下列说法中正确的是( )
A .四棱锥有4个面
B .连接两点间的线段叫做两点间的距离
C .如果线段 ,则M是线段AB的中点
D .射线 和射线 不是同一条射线
10、下列几何体中,属于柱体的有( )
A .1个 B .2个 C .3个 D .4个
11、已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A .10 cm2 B .5π cm2 C .10π cm2 D .16π cm2
12、“节日的焰火”可以说是( )
A .面与面交于线 B .点动成线 C .面动成体 D .线动成面
13、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
14、长方形 绕 旋转一周,得到的几何体是( )
A .圆柱 B .圆锥 C .棱柱 D .长方体
15、有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是 ( )
A .192 B .216 C .218 D .225
二、填空题(每小题4分,共计20分)
1、棱长为2的正方体,摆成如图所示的形状,则该物体的表面积是 .
2、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
3、五棱柱是由 个面围成的,圆锥是由个面围成的 .
4、用棱长为1cm的小正方体,搭成如图所示的几何体,则它的表面积为 cm2.
5、一个正方体的棱长2×102毫米,则它的表面积是 .体积是 .
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?
2、把下列几何图形与相应的名称用线连起来:
3、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.
4、写出下图中各个几何体的名称,并按锥体和柱体把它们分类.
5、如图所示是长方体的表面展开图,折叠成一个长方体,若AE=FH=14cm,FG=2cm,则该长方体的表面积和体积分别是多少?
6、(1)如图,(1)、(2)、(3)、(4)为四个平面图形,请数一数:每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请你将结果填入下表.
(2)观察上表,推断一个平面图形的顶点数,边数,区域数之间有什么关系?
7、已知长方形ABCD的长为10cm,宽为4cm,将长方形绕AD边所在直线旋转后形成一个什么立体图形?这个立体图形的体积是多少?
8、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
展开阅读全文