资源描述
七年级数学上册1.1生活中的图形同步试卷【word可编辑】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的( )
A . B . C . D .
2、由4个棱长均为1的小正方形组成如图所示的几何体,这个几何体的表面积为( )
A .18 B .15 C .12 D .6
3、将下左图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
4、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
5、下列图形中,不属于立体图形的是( )
A . B . C . D .
6、如图是一个由平面图形绕虚线旋转得到的立体图形,则这个平面图形是( )
A . B . C . D .
7、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
8、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
9、如图,5个边长为 的立方体摆在桌子上,则露在表面的部分的面积为( )
A.13cm B.16cm C.20cm D .23cm
10、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).
A .56 B .32 C .24 D .60
11、长方形 绕 旋转一周,得到的几何体是( )
A .圆柱 B .圆锥 C .棱柱 D .长方体
12、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
13、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )
A .长方体 B .球 C .圆柱 D .圆锥
14、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
15、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
16、下列几何体中,属于柱体的有( )
A .1个 B .2个 C .3个 D .4个
17、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有6条棱,则该模型对应的立体图形可能是( )
A .四棱柱 B .三棱柱 C .四棱锥 D .三棱锥
二、填空题(每小题2分,共计40分)
1、如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为 .
2、从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是 cm2。
3、长方形绕着它的一条边旋转一周后形成的几何体是 .
4、一个容积是125dm3的正方体棱长是 dm.
5、六个长方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 .
6、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 .
7、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 .
8、如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有 条.
9、如图是一个几何体的三视图,若这个几何体的体积是 36,则它的表面积是 .
10、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 条.
11、将下列几何体分类,柱体有: (填序号).
12、如图,由18个棱长为2cm的正方体拼成的立体图形,它的表面积是 cm2.
13、一个几何体的面数为12,棱数为30,它的顶点数为 .
14、有棱长比为 的两个正方体容器,若小容器能盛水10千克,则大容器能盛水 千克.
15、将长方形ABCD绕CD边旋转一周,得到的几何体是 .
16、薄薄的硬币在桌面上转动时看上去象球,这说明了 点线面体的关系.
17、铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是 .
18、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .
19、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为 .
20、10个棱长为acm的正方体摆成如图的形状,这个图形的表面积是 .
三、计算题(每小题2分,共计6分)
1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
四、解答题(每小题4分,共计20分)
1、已知长方形ABCD的长为10cm,宽为4cm,将长方形绕AD边所在直线旋转后形成一个什么立体图形?这个立体图形的体积是多少?
2、如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)
3、在一块长为 ,宽为 的长方形铁片的四个角都剪去一个边长为 的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含 、 的代数式表示).
4、如图1,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.
(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
5、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)
展开阅读全文