1、课时作业 50直线与圆锥曲线1设F1,F2分别是椭圆E:x21(0b1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列(1)求|AB|;(2)若直线l的斜率为1,求b的值解析:(1)由椭圆定义知|AF2|AB|BF2|4,又2|AB|AF2|BF2|,得|AB|.(2)设直线l的方程为yxc,其中c.A(x1,y1),B(x2,y2), 则A,B两点坐标满足方程组化简得(1b2)x22cx12b20.则x1x2,x1x2.因为直线AB的斜率为1,所以|AB|x2x1|,即|x2x1|.则(x1x2)24x1x2,因为0b2,求k的取值范围解析:(
2、1)设双曲线C2的方程为1(a0,b0),则a2413,c24,再由a2b2c2,得b21,故双曲线C2的方程为y21.(2)将ykx代入y21,得(13k2)x26kx90.由直线l与双曲线C2交于不同的两点,得k22,即x1x2y1y22,2,即0,解得k23.由得k2b0)的离心率与双曲线x2y21的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M的方程;(2)若直线yxm交椭圆M于A,B两点,P(1, )为椭圆M上一点,求PAB面积的最大值解析:(1)由题可知,双曲线的离心率为,则椭圆的离心率e,由2a4,b2a2c2,得a2,c,b,故椭圆M的方程为1.(2)联立方程,得4x22mxm240,由(2m)216(m24)0,得2m2.且所以|AB|x1x2|.又P到直线AB的距离为d,所以SPAB|AB|d .当且仅当m2(2,2)时取等号,所以(SPAB)max.4