1、基于单片机的浴缸水位水温控制系统设计452020年4月19日文档仅供参考* 师 范 学 院 信 息 工 程 学 院毕业设计(论文)附属过程管理材料( ) 专 业 电子信息工程 学 号 0908* 学生姓名 * *师范学院教务处印制目 录1. 湖州师范学院本科毕业设计(论文)选题审批表2. 湖州师范学院本科毕业设计(论文)任务书3. 外文原稿(复印件)与译文4. 文献综述(前言、主题、总结、参考文献)5. 湖州师范学院本科毕业设计(论文)开题报告6. 湖州师范学院本科毕业设计(论文)中期检查报告7. 湖州师范学院本科毕业设计(论文)指导教师审阅表8. 湖州师范学院本科毕业设计(论文)评阅人评阅表
2、9. 湖州师范学院本科毕业设计(论文)硬件验收评分表10. 湖州师范学院本科毕业设计(论文)答辩记录表11. 湖州师范学院本科毕业设计(论文) 答辩评分表12. 湖州师范学院本科毕业设计(论文)评分表13. 湖州师范学院本科生毕业设计(论文)诚信承诺书14. 校级优秀毕业设计(论文)推荐表湖州师范学院本科毕业设计(论文)选题审批表学生姓名*班级0908*设计(论文)选题名称基于单片机的浴缸水位水温控制系统选题理由及准备情况:一、 选题理由 温度控制是我们的日常生活中总会遇到的过程控制,很多的生产与生活过程都是以温度做为参考量。例如当我们正在公共的澡堂洗澡的时候,经常会突然感觉水特别的凉和热,让
3、人难以忍受,有的人就会很难受,以后就不愿意来而且抱怨这家澡堂,因此就会有人很想想出办法来改变这个现状。温度检测和控制的准确性直接影响生产状况和产品质量。因此,在很多工业现场,我们对温度测量和精度有着相当高的要求。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式、燃料、控制方案也有所不同。在现代生活中已经有了越来越多的温度控制系统,如经过红外线遥控控制温度,或者是GSM来控制温度,当温度过高,则有GSM发送短信来提示,然后短信控制风扇的转速和风力,也能够经过GSM来进行报警等等。高精度的恒温控制,能够将温度相对恒定的控制在一个值,用以满足高精度的工业要求。也有自带因子的模糊温度控制,和基
4、于单片机的模糊温度控制系统,能够达到稳态和网络可靠性优越的功能。二、 准备情况 一开始确定了毕业设计的思路之后,开始查找了各种温度传感器,语音芯片,89S52单片机,水位检测,液晶显示的资料,综合的进行了比较。也对现在市场上的出现的温度控制系统进行了了解,从而完善了自己的毕业设计思路,完成了自己的初步设想。采用DS18B20温度传感器测量温度,LCD12864显示温度,经过水位检测电路和温度控制电路,来达到将水位和水温控制在自己适宜的范围。指导教师意见: 该题对现实生活的运用具有一定的可行操作性,涉及单片机多方面及本学科课程的知识内容,符合专业设计课题的悬疑要求,同意选题开题 指导教师(签字)
5、 * 年 6 月 28 日教学院长意见:教学院长(签字) 年 月 日 湖 州 师 范 学 院毕业设计(论文)任务书学院信息工程学院专业电子信息工程班级0908*学号37姓名*毕业设计(论文)题目基于单片机的浴缸水位水温控制系统毕业设计(论文)进行起止日期 .6.30- .4.14毕业设计(论文)的内容及技术参数 本次设计的主要内容有温度测量,水位检测,温度控制,语音报警,液晶显示,温度上下限的控制。温度传感器测量温度由于要测量水温,需要具备实时性和性价比,采用了DS18B20温度传感器。DS18B20温度传感器的测量温度能够从-55到125,温度精度误差0.5,能够直接输出温度值,抗干扰能力也
6、很优越,测量水温特别要注意防止液体腐蚀传感器外壳,在这点上,防水DS18b20更具优越性。 液晶显示主要是采用LCD12864,因为显示的量比较大,有当前温度;设定温度值,还要提示温度过高过低,在LCD1602或者数码管上并不能完全的实现。它的工作温度能够在-20到70,能够兼容多数的单片机,而且接口简单,操作简单方便,在显示和硬件电路上都有优势,在性价比上也有不小的领先。语音提示是采用ISD1420芯片ISD1420芯片采用CMOS技术,可录放实际为8至20秒,音质好。拥有边缘/电平触发两种放音控制和唯一的录音控制,电路简单。 毕业设计(论文)的要求1、根据公布的毕业论文选题计划,结合自己具
7、体情况在指导教师的指导下进行选题,在题目确定后必须尽早与指导教师一起,做好毕业论文的准备工作。2、在毕业论文任务书下达后两周内,必须写出对毕业论文所选题目的意义和研究现状、研究目标和内容、研究方法和步骤、文献资料查阅情况等文献综述,填写湖州师范学院毕业论文开题报告交指导教师审阅。3、必须认真独立完成毕业论文阶段规定的全部工作任务,充分发挥主动性、创造性和刻苦钻研精神,严禁弄虚作假,不得抄袭她人的毕业论文或已有成果。4、要勇于创新,敢于实践,注意各种能力的锻炼和培养(如外语能力等)。参阅外文文献资料不得少于3000个外文单词,并译成中文。5、要尊敬指导教师,虚心接受指导,遵守纪律,爱护公物。如因
8、不听指导造成的伤害或其它后果,均由学生本人负责。6、撰写毕业论文时,做到条理清晰,逻辑性强,符合科技写作规范,并严格按照学校所规定的本科生毕业论文要求进行撰写、打印和装订。毕业论文字数达到专业规定要求。7、在答辩前一周,应将毕业论文交指导教师审核签字后,送交评阅教师评阅。8、需提交完整的毕业论文两份,一份交指导教师保存,一份交学院保存。毕业设计(论文)查阅的资料1周秀明,曹隽,张春龙.基于DS18B20的单片机温度检测与调节系统设计J.实验室科学, ,14(1):79-81.2王梅红.基于单片机的温度控制系统设计与仿真J,四川兵工学报, ,33(2):102-1033张毅刚,彭喜元.单片机原理
9、及应用设计M.电子工业出版社, :180-2004吴健,侯文,郑宾.基于STC89C52单片机的温度控制系统J.电脑知识与技术, ,07(4):902-903.5魏雅.基于AT89S52单片机红外遥控温度控制系统设计J.陕西理工学院学报, ,28(3):32-36. 6王起源,王索成,孙长龙.基于GSM和MSP430单片机的温度控制器设计J.吉林化工学院学报, ,28(5):58-61.7陈伟,邢梅香.基于SOC单片机的模糊温度测控系统设计J.化工自动化及仪表, ,37(9):125-127.8张小娟.带调整因子模糊温度控制器的研究J.机械设计与制造, ,2(19):19-21.9朱悦,徐晓辉
10、,宋涛,赵利军,王蒙.小型高精度恒温系统的研究J.现代电子技术, ,5(316):101-103.10程汉湘,姚齐国.外冷器温差检测系统J.自动化仪表, (24):2932.11陈晨.基于单片机的温控制器的设计J.北京电力高等专科学校学报, ,28(5):95.12王一然.基于单片机的定时温控系统设计与研究J.科学与财富, ,(8):86.13李君懿.基于PSTN的家用电器远程控制系统设计J.单片机与嵌入式系统应用, ,(12)55-56.14吴凌燕.基于AT89C52的实验室监控系统设计仪表技术J.仪表术, (2):3-5.15Paul,J.M.Thomas,D.Bobrek.A.Scena
11、rio-oriented design for single-chip heterogeneous multiprocessorsJ.IEEE transactions on very large scale integration (VLSI) systems, (8):30-34 16王海峰.基于AT89S52的数据采集系统J.国外电子元器件, (4):17-20.毕业设计(论文)进度安排序号毕业设计(论文)各阶段进度名称日期备 注1完成选题,下达毕业设计任务书 .6.30 .7.22查阅、收集、资料,了解毕业设计需要的硬件 .7.6 .9.253完成文献翻译、文献综述、开题报告 .9.2
12、5 .9.3012.18上交开题报告、文献综述4基本设计出浴室水温温度控制的主要功能的总体框架,对整个系统的实现过程有初步、系统地认识,总体思路基本明确。 .9.30 .11.2012.12.20开题答辩13.3.20日中期答辩检查5完成系统设计,撰写毕业设计论文,完成实物测试 11.20 .1.5写完交指导老师修改和审阅、评阅老师评阅6上交毕业设计论文,毕业设计论文一次答辩 .1.5 -1.1213.5.12前毕业设计答辩7上交毕业设计论文,毕业设计论文二次答辩 .4.19 .5.12 指导教师(签名) * 学 生(签名) * 开始执行任务日期 6月30 毕业设计(论文)外文翻译(原文) A
13、N EMBEDDED SINGLE CHIPTEMPERATURECONTROLLER DESIGNJ. Jayapandian and Usha Rani Ravi Design Development & Services Section, Materials Science Division Indira Gandhi Centre for Atomic Research, Kalpa Kama 603 102. Tamil Nadu. IndiaABSTRACT This paper describes a single chip embedded temperature contro
14、ller design programmed in a single Programmable System on Chip (PSoC);a mixed array logic consists of analog,digital and digital communication blocks within in it.The virtual instrument control program written in Labview ver.7.1,a graphical language,provides user friendly menu driven window based co
15、ntrol panel,interacts with the single PSoC chip design for sensing and controlling the temperature.This simple cost effective embedded design finds potential application in laboratory as well as in industries.This deign can also be made as a standalone system without PC by programming LED/ LCD displ
16、ay and key pad attachment modules in same PSoC chip.1. INTRODUCTION The advent of intelligent programmable embedded silicon designs provides the ability to implement any required hardware programmatically for the design automation in industries and laboratories.Recent trend in laboratory as well as
17、in industrial automation designs uses minimal hardware and maximum support of software.The programmable embedded components and application software available in the market enables the designer for user friendly cost effective design solution for any system automation.Temperature controllers are pla
18、ying vital role in industries and laboratories.To accurately control process temperature without extensive operator involvement,a temperature control system relies upon a controller,which accepts a temperature sensor such as a thermocouple or RTD as input.It compares the actual temperature to the de
19、sired control temperature,or set point,and provides an output to a control element.The controller is one of the major parts of the entire control system,and the whole system should be analyzed in selecting the proper controller.This paper describes a novel single chip temperature controller design w
20、ith Cypress Micro systems Programmable System on Chip (PSoC).Virtual instrument control program written in Lab VIEW ver.7.1 interacts with the embedded PSoC design and senses and controls the temperature of furnace / load.2. PROGRAMMABLE SYSTEM ON CHIP (P Soc) While Sand inexpensive interface to sen
21、sors,andmore.CypressSystem-Chip(PSoC)architecture offers a flexible,economical solution for a wide variety of applications.This paper describes the design of a temperature controller on a single CY8C27143,8 pin PSoC chip.Ass how n in fig.1,it features four main areas:PSoC core,digital system,analog
22、system,and resources including in/out ports. This architecture allows the user to create customize Alpheratz configurations that match the requirements of each individual application.The UAR Tinter face, coupled with configurable analog and digital peripherals makes the CY8C27143 truly universal in
23、its connections to the external world.The PSoC core includes:an M8C micro controller;32K Bytes of program flash memory;2Kbyte of data RAM;internal 24 oscillator;sleep and watchdog timer;general-purpose input/output pins (GPIO) allowing any pin to be used as digital input or output,and most pins to b
24、e used as analog inputs or outputs.Every pin can be used as a digital or analog interrupt.The digital system is made up of 8digital PSoC blocks.Each block is an 8-bit resource that can be used alone or combined with other blocks to form peripherals.Possible peripherals include:PWMs (8- to 32-bit);PW
25、Ms with dead band (8- to 24-bit);counters (8- to 32-bit);UART 8-bit with selectable parity;SPI master and slave;cyclical redundancy checker/generator (8- to 32-bit);pseudo random sequence generators (8- to 32-bit).These digital blocks can be connected to any of the GPIO through a series of global bu
26、ses.These buses also allow for signal multiplexing and performing logic operations.The analog system is made up of12configurable blocks,each comp rising an op amp circuit allowing the creation of complex analog signal flows.Analog peripheral sar every flexible and can be customized to support specif
27、ic application requirements.Some of the more common PS0C analog functions are:filters (2 and 4 pole band-pass,low-pass,andnotch); amplifiers (up to 2,with selectable gain to 48x);instrumentation amplifiers (1with selectable gain to 93x); comparators (up to 2, with 16 selectable thresholds);DAC (up t
28、o 2, with 6 to 10-bit resolution); and SAR ADC (up to two,with 6-bit resolution).In combination with the digital blocks,additional functions can be created, including: incremental ADCs (up to 2, with 6- to 14-bit resolution); delta sigma ADC (1,with 8-bit resolution at62.5ksps).The additional system
29、 resources provide additional capability useful for the complete system design.Fig. 1 : Block diagram of Programmable System on Chip (PSoC) internal blocks3. VIRTUAL INSTRUMENT PROGRAM Virtual instrument (VI) is an application of general purpose digital PCs for the measurement and control of various
30、 physical variables.The VI program mimics the control processes,which are in a remote area,on the PC screen.On-going process control automation can be visualized by the experimentalist through PC screen.VI program provides inexpensive and yet a powerful platform for the control and data acquisition
31、of process variables.These programs are easy to implement with graphic languages (G-language).The “G” language implements the data flow technique.The usage of “G” language provides easy interfacing with PCs under the Windows environment 2. The “G” language provides built-in function libraries for a
32、variety of application requirements as graphic palettes, which in turn supports the required DLL s for the functions to run under windows environment.Usually the “G” language VI programs consist of two frames viz.,panel diagram and functional diagram.In the panel diagram,programmers can assign vario
33、us controls and indicators (i.e., input and output variables).their requirements and in the functional diagram, the designers can implement the required. Fig. 2 : PSoC designer screen for single chip temperature controller Functions available as a function library in Lab.National Instruments version
34、7.1 incorporates all the necessary functions as icons in its package.4. PSoC SINGLE CHIP TEMPERATURE CONTROLLER DESIGN Fig.2 shows the PSoC designer screen for the embedded single chip temperature controller design project 1.Left side of the screen shows the settings of global resource and user modu
35、le parameters along with pin connectivity.Middle portion of the screen shows the analog and digital blocks user module placement.Top portion of the screen shows the selected user modules for this project.Right side of the screen describes the pin connectivity configured in the design.In this novel s
36、ingle chip design,thermocouple (TC) signal has been amplified by a programmable gain amplifier (PGA) placed in the PSoCs analog block.The amplified TC signal has been fed in to a 12 bit Analog-to digital(ADC) user module programmed in the PSoC chip, which includes both analog and digital blocks for
37、its functionality by PSoC designer programming.The converted digital data of the TC signal has been fed to the UART user module for serial communication with Personal Computer.The UART user module placed in the chip,automatically gets placed in two digital blocks of PSoC chip,transmitter (TxD) and r
38、eceiver (RxD) for PCs serial communication.A pulse width modulator (PWM),placed in the PSoC digital block,sets a serial pulse width modulated TTL pulses in response to the PID control function for the deviation in set and measured temperature.This will in turn controls the optically coupled solid st
39、ate relay (SSR) driving the AC line power connected to the load/furnace3,4.The menu driven window based virtual instrument control program senses the temperature,via,thermocouple,TC amplifier,12-bit ADC and UART communication block of PSoC chip and evaluate the control functions like PID, linear hea
40、ting, on-sweep and sets the pulse width of PWM in a PSoC chip via UART block in a serial communication. Fig. 3 : Single PSoC chip Temperature controller design Fig.3.shows the connectivity of a single PSoC chip design with solid state relay (SSR)and USB port via,serial-to-USB converter cable for com
41、munication with PC.The SSR,acts as AC power controller for controlling the furnace power,has been activated by the PWM pulses from PSoC chip.The menu driven virtual instrument control program works in window environment interacts with the embedded design for sensing,controlling and acquiring the tem
42、perature data. On-line plotting of acquired temperature data also carried out by the VI program.5. CONCLUSION A simple and cost effective embedded temperature controller has been designed,fabricated and tested successfully for its functionality.This compact designs permits the user to select any typ
43、e of control function through its virtual instrument program,written in LabVIEW 7.1,and works under window environment.This design can be directly connected to PCscom port or USB port via USB-to-serial converter cable,the SSR power controller module can be connected on the furnace stand.The opticall
44、y isolated power controller provides safe operation without damaging the interfacing intelligent controller.6. REFERENCES1 J. Jayapandian.Current Science, Vol 90. No.6. 25th March . p.765-770.2.National Instruments LabVIEW user manual.3.J.Jayapandian.Design Briefs. Electronic Design Magazine. A Pent
45、on Publication.New Jersey,USA. ED Online ID #5687.September 15, .4.J. Jayapandian et.al.J. Instrum.Soc.India.33 (2) 75 80 ( ). 出处:J.instrum.soc.india 38(1) 50-54. 毕业设计(论文)外文翻译(译文) 嵌入式单片机温度控制器设计 J. Jayapandian 和 Usha Rani Ravi 设计开发服务部 材料科学部门 英迪拉.甘地原子能研究中心 卡尔帕卡姆-603102 泰米尔纳德邦(印度) 摘要 本文介绍了一种在可编程系统芯片(PSOC)上的嵌入式单片机温度控制器,它由数字,模拟和通信功能模块组成,是一个混合的逻辑阵列。单一的PSOC芯片用来控制和检测温度,LabVIEW ver.7.1虚拟控制器能够控制图形语言和已经编写完成的程序以及受窗口驱动的控