收藏 分销(赏)

2024人工智能大数据创新应用案例集.pdf

上传人:宇*** 文档编号:4419497 上传时间:2024-09-20 格式:PDF 页数:66 大小:8.98MB
下载 相关 举报
2024人工智能大数据创新应用案例集.pdf_第1页
第1页 / 共66页
2024人工智能大数据创新应用案例集.pdf_第2页
第2页 / 共66页
2024人工智能大数据创新应用案例集.pdf_第3页
第3页 / 共66页
2024人工智能大数据创新应用案例集.pdf_第4页
第4页 / 共66页
2024人工智能大数据创新应用案例集.pdf_第5页
第5页 / 共66页
点击查看更多>>
资源描述

1、2024 人工智能&大数据创新应用案例集002003在科技日新月异的今天,人工智能+、数据要素 X正成为引领科技变革、驱动社会发展的核心力量。人工智能+,代表着人工智能技术在各个领域的广泛应用与深度融合,为传统产业带来了前所未有的创新机遇;而数据要素 X,则是指数据作为新的生产要素,在数字经济时代发挥着越来越重要的作用。本案例集旨在汇集近年来人工智能与大数据在各个领域中的创新应用与实践成果,展现科技如何深度融入社会生活的方方面面,推动各行各业的转型升级。案例集收录的人工智能&大数据创新应用典范案例,基于面向各行业企事业单位、数字原生企业、各类数字化服务厂商征集精选而出。通过精选的案例,我们希望

2、能够为读者提供一个全面了解人工智能与大数据应用现状与发展趋势的窗口,激发更多的创新思维与实践探索。最后,我们要感谢广大读者的支持和关注,也期待未来能够有更多优秀的案例加入到这个集合中来,共同见证人工智能与大数据技术的辉煌未来。前言2024 人工智能&大数据创新应用案例集0042024 人工智能&大数据创新应用案例集004005005目录前言03人工智能创新应用08兴业银行:兴业银行 AI 智能财富顾问08新奥天然气:LNG 智能交付解决方案12上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践17通用健康管理:体检报告智能阳标系统26汇智智能:Agent 云智能体云平台数字员

3、工31大数据创新应用34青岛啤酒:“数据驱动+生态赋能”的物流运输管理34同方知网:大数据知识管理平台40全景智联:面向市域社会治理的多元信息跨域集成关键技术及应用46远光软件:集团企业经营分析50中电数创:数据要素加工交易平台54思迈特软件:SmartbiAIChat 应用案例,某保险集团内部经营分析632024 人工智能&大数据创新应用案例集0060060070072024人工智能&大数据创新应用案例集2024 人工智能&大数据创新应用案例集008兴业银行:兴业银行 AI 智能财富顾问人工智能创新应用案例简介2023 年,兴业银行启动“AI 智能财富顾问”项目,着力打造手机银行 APP 端

4、专业的、有态度的、具有兴业特色的智能财富助理,为全行零售客户提供资产配置、投资者教育、市场资讯以及产品推荐服务,同时将潜力营销客户转介线下协同经营。AI 智能财富顾问是兴业银行基于人工智能、大数据以及兴业多年积累的丰富资产配置经验和对客经验打造的智能线上财富顾问,当前设计包含兴财分、资产检视、产品推荐和持仓收益等主题功能场景,在智能会话持续升级的同时拓展深耕基金解读、财富养成、市场行情等财富场景。AI 智能财富顾问力求做到更懂客户、更懂专业、更懂产品、更能坚持,成为客户可靠的线上理财顾问:1.更懂客户,第一,在客户主动对话 AI 智能财富顾问的时候,能了解到发问背后客户的真实需求;第二,基于线

5、下服务客户的经验,在一些关键时刻(市场波动、持仓收益变动等),能主动提供与客户相匹配的策略。2.更懂产品,在产品分类、打标、推荐的逻辑上,定量+定性,与行内的资产配置模型推荐等结合。3.更懂专业,一是配置逻辑,二是客户需求与方案的匹配。4.更能坚持,售前更了解客户需求,售中产品和客户需求更匹配,售后关键时刻主动、持续的陪伴。008009背景和主要驱动力当前,金融机构纷纷入局财富管理蓝海,但对银行业财富管理业务冲击最大的依然是互联网金融机构为代表的企业,客户到访网点频次越来越低,也更偏向于线上自助购买财富产品。手机银行财富产品销量占比近 80%,且趋势逐年增加,越来越多客户倾向于通过 App 自

6、助购买财富产品,同时他们在线上财富旅程中对于资产检视、财富配置、收益查询、售后陪伴、投教资讯等功能服务有着旺盛的诉求。客户逐渐具有基本的投资意识,但与之对应的,他们也缺少及时、专业的财富管理服务工具。通过线上渠道为更多的客户提供财富管理服务,能够打破时间和空间的限制,提升银行的财富管理经营能力。通过建立线上 7*24 小时的 AI 智能财富顾问,能够发挥兴业银行已有资源禀赋,满足全行零售客户线上财富管理的个性化需求,做好客户投前-投中-投后财富陪伴服务。AI 智能财富顾问的建设目标,是基于 AI 能力,从客户视角出发,利用“人+数字化”的方式,融入财富顾问工作方法论,为客户提供及时、专业的财富

7、管理服务工具和线上线下融合的沉浸式服务体验,实现 MAU 和 AUM 的双转化。战略规划和行动路线图根据同业竞品分析和兴业银行资产配置数字化体系的底座建设基础,拟定了 AI 智能财富顾问建设的行动路线。第一步,聚合已有财富陪伴服务功能。在过去两年的财富数字化转型道路上,兴业银行陆续建设了财富体检、财富账单、产品精选、投资生态圈等财富管理数字化基础服务功能,实现对客户的全方位持仓检视、跨多区间、多品类的收益分析、基于客户金融特征的产品推荐以及提供丰富的投研投教资讯服务。利用智能对话能力,以快速响应和解决客户需求为导向,通过聚合资产检视和配置、投资盈亏分析、产品推荐和解读、投资者教育、市场点评等功

8、能,标准化、简单化内容陪伴流程。第二步,实现对于客户意图的精准识别。基于客户的财富阶段、风险偏好、历史投资行为和交易行为,结合市场行情信息,为客户自动提供个性化产品推荐组合、净值波动提醒、止盈止损建议等多维度智能化财富旅程陪伴服务。第三步,建设协同经营服务流程。围绕客户线上旅程(资讯浏览、账单收益、购买断点等)埋点,将复杂产品潜力配置、行外吸金、AUM 维稳等客户营销线索实时推送至财富规划系统供理财经理接触营销,同时将线下配置和接触情况回传至 AI 智能财富顾问提供更加个性化的服务场景。实施效果服务客户方面:手机银行财富体检自 2022 年 1 月上线以来,用户流量剧增,用户人次数突破140

9、万户,产品成交攀升,用户体验财富体检购买推荐产品达 168 亿元。财富体检通过解读和分析用户资产,基于兴业银行专业的资产配置模型,针对不同持仓类型的用户,给出收益升级的个性化资产配置建议。赋能一线方面:一线理财经理客户经营中存在客户批量服务压力大、客户全时段服务难度高以及客户沟通缺乏支持的经营痛点,利用 AI 财富助手的技术优势,人机协同,拓展客户经营的广度和深度,双向赋能和提升。兴业银行:兴业银行 AI 智能财富顾问2024 人工智能&大数据创新应用案例集010实施难度与复杂度AI 智能财富顾问在建设过程中,主要遇到的三大困难点:一是 AI 智能财富顾问建设涉及关联系统多,从前端手机银行,到

10、中台数据整合和建设,到后端产品销售系统、财富规划系统协调改造,以及基础的智能语音处理平台的设计优化,该项目突破行内已有架构,整合客户、产品、资讯、策略等相关系统功能,涉及多方研发和架构师沟通协调,逐步实施方案落地。二是 AI 智能财富顾问旨在面向全行零售客户提供全流程的财富陪伴服务,针对不同层级、不同投资偏好、不同财富阶段的客户,制定与之对应的产品策略和对话流程。当前全行零售客户特征繁多,需求复杂,AI 智能财富顾问需依靠机器学习算法和量化模型,筛选有效标签和策略,赋能客户需求洞察流程,完成智能化资产配置模型的动态升级。三是对话语料资源建设难度大。AI 智能财富顾问能智能对话、精准回复的基础,

11、是基于大量的对话语料加以训练,以达到识别客户意图的目的。在冷启动阶段,需有大量一线业务人员参与项目建设,共同完成分场景的语料建设。案例亮点(一)MOT 策略触达1.市场行情 MOT:在市场波动时,提供及时专业的行情点评,详细解读市场波动对持仓的影响,如午间点评、收盘点评、热点解读等;2.客户行为 MOT:通过客户在我行主动或被动的金融活动,如大额资金变动、产品到期、产品页面浏览等,捕捉客户的潜在投资需求,推荐产品实现转化。(二)专业的资产配置模型1.统一的配置逻辑:从客户出发,建立统一的配置逻辑。客户配置阶段不同,对理财的认知不同,对产品和资产配置服务的接受度也不一样;建立从无到有,从简单到复

12、杂,从买一个到配多个,从配多个到配更好的层层递进的配置思路。2.客户与策略的深度匹配:基于多维数据,识别客户需求,匹配产品与服务,形成专业、综合、个性化的建议方案。(三)人际协同,赋能一线1.获客转接,赋能减负:利用AI智能财富顾问的技术优势,通过引入AI的智能服务能力在忙时托管,拓展一线接触外延,广泛获取经营机并转接给理财经理,并于理财经理客户经营流程中赋能支持。2.深度经营,优化指引:发挥理财经理专业与温度优势,在满足客户人工需求、促成客户的产品选择与资产配置的基础上,反向指导 AI 智能财富顾问的优化迭代。人机协同,实现资源共享,拓展客户经营的广度与深度,双向赋能与提升。011申报单位名

13、称兴业银行股份有限公司单位简介兴业银行成立于 1988 年 8 月,是经国务院、中国人民银行批准成立的首批股份制商业银行之一,总行设在福建省福州市,2007 年 2 月 5 日正式在上海证券交易所挂牌上市,注册资本 107.86 亿元。2023年7月5日,英国 银行家 杂志发布2023年度的全球银行1000强榜单,兴业银行再攀新高,按照一级资本排名第 17 位,国际影响力和竞争力持续提升。(四)敏捷会话配置流程灵活配置标签和流程:利用兴业银行专业的智能语音处理平台,支持总分行用户灵活配置、发布AI 智能财富顾问的对话流程。用户可以根据实际业务经营需要,多维配置客户的标签组合和定制化的对话流程,

14、满足一线营销的敏捷性需求。(五)开放域问答引导客户形成良好的投资习惯:开放域旨在与用户进行会话交流,在会话中解决用户简单需求、学习基础财富管理类知识,引导用户进入主题流程深入解决财富类需求,在长期使用过程中形成良好的投资习惯。兴业银行:兴业银行 AI 智能财富顾问2024 人工智能&大数据创新应用案例集012新奥天然气:LNG 智能交付解决方案人工智能创新应用案例简介新奥股份在 LNG 智能交付领域不断开展数字化转型实践,依托 LNG 接收站出货平台,制定 LNG 智能交付解决方案,建设包括智能指派、智能监控、智能进出场的综合管理平台,已累计接入1700多家承运商,链接23000多个车辆定位数

15、据,其中LNG车辆接入近1万辆,达到全国 LNG 车辆总数的 85%。智能指派实现安全合规前置化审核,确保车辆合规有效,指派任务智能灵活,从而提高运输效率、降低运营成本、增强客户服务。智能监控通过车辆线上化操作,实时监控在途车辆,节点监控与危网地图集成,实现任务智能化精准预警,减少人工跟踪出现偏差。智能进出场通过数据集成,各节点信息互联互通,打通了装卸环节与承运环节的数据和系统,使过程更透明,数据畅通流动,实现物流运输全流程数字化。此外,LNG 智能交付解决方案还致力于接入和解析车辆 ADAS/DMS 主动安防数据,在技术和业务、承运商等多方配合努力下,该平台已在舟山 LNG 接收站的业务环境

16、下实现ADAS/DMS 的全覆盖,有效保障进出舟山岛的车辆在途安全。012013背景和主要驱动力传统工厂/接收站痛点:1.传统线下效率低:采销运及装车计划信息线下收集,更改随意,信息不对称,供需调度匹配及对帐结算需大量人员沟通成本,且难以保障准确性。2.安全隐患风险大:物流公司多管理难度高,车辆在途运行信息不透明,驾驶员在途驾驶行为,存在安全管理盲区,难以满足自身及政府对车辆安全监管的要求。3.信息孤岛不透明:车辆进入厂区前,易集中到达,无计划性,线下操作,存在违规行为、进场排号放行依靠预估和电话沟通,纸质单据流转,无法保证数据准确性,同时不公平现象,引发利益冲突等。4.货物流向不清晰:车辆配

17、送、货物流向难以掌握,存在串货、延误等风险,在途追踪靠线下电话沟通,信息不对称不透明存在管理盲点,沟通成本高,客户满意度低。技术特色及应用实例数字化创新:1.智能指派业务根据时效预测实现调度派车智能化。2.智能监控业务通过智慧物联实现全域三维实时监控可视化。3.智能进出场业务打通数据孤岛实现车辆进出场自助值守无人化。LNG 智能交付解决方案技术开发主要亮点:1.架构及扩展性解决方案底层系统基于微服务架构建设,遵循微服务架构的基本原则。使用 SpringBoot+Dubbo做为开发框架,进行服务的开发。系统设计、实现时为保证系统的安全性,采用相关的软件技术提供严格的管理机制、控制手段和事故监控等

18、技术措施提高网络系统的安全性。在业务系统设计过程中,系统规划、编码规范等均遵从一定的安全规范。产品的底层实现具备了较好的扩展能力,可以相对快速的进行容量和性能水平扩展以及纵向快速解耦。2.指派、在途、进出场全程一体化、智能化监管智能指派实现了安全合规前置化审核,确保车辆合规有效,指派任务智能灵活,从而提高运输效率、降低运营成本、增强客户服务。智能监控通过车辆线上化操作,实时监控在途车辆,节点监控与危网地图集成,实现任务智能化精准预警,减少人工跟踪出现偏差。智能进出场通过数据集成,各节点信息互联互通,打通了装卸环节与承运环节的数据和系统,使过程更加透明,数据畅通流动,实现物流运输全流程数字化。3

19、.危货导航时效预测算法通过与图商合作,在业内首创危险品运输导航功能。结合大量的历史路线、风险点、危险品限行等信息来还原真实的车辆运行路径以及状态,对政策法规、限高、限重、避让区域、危货速度控制、休息时间、装货等待时长、装货操作时长、安检时长、天气等全量影响在途时长的因素进行还原分析,形成大数据时效预测算法,能较为精准预测车辆装车到达时间与货物到达目的地时间,有效避免车辆积压现象发生。同时深入研究分析驾驶员的个人行为对算法的影响,以提升算法的精度。新奥天然气:LNG 智能交付解决方案2024 人工智能&大数据创新应用案例集0144.卫星定位与物联设备通过搭建 GPS 定位中心,接收各承运商车辆的

20、卫星定位数据。在多年的业务执行与积累下,平台已经接入了 1700 多家的承运商,链接 23000 多个车辆定位数据,其中 LNG 车辆已接入近 1 万辆,达到全国 LNG 车辆总数的 85%。同时致力于接入和解析车辆 ADAS/DMS 主动安防数据,在技术和业务、承运商等多方配合努力下,已经在舟山接收站的业务环境下实现的 ADAS/DMS 的全覆盖,有效保障进出舟山岛的车辆在途安全。此外,我们还与新奥数智研究院合作开发“视频报警误报智能判断算法”,以大量的 ADAS/DMS 报警数据为基础,通过 AI 算法模拟,有效减少误报情况发生。5.政企数据互联在危化品运输行业,除了安全与效率之外,合法合

21、规也是重要要求。该解决方案通过创新业务模式,以政企合作的方式,将 LNG 运输信息(人、车、企、时间、线路)、安检信息(驾驶员自检、生产企业复检)传输到交通部门与交警部门,突破了政企信息阻碍与数据壁垒,强化分析研判,跨政企实现危品运输风险隐患未动先知、异动即知,预测预警预防能力得到明显提升。6.多部门联动攻克了多公司、多部门、多技术联动的业务、技术、运营等难题,突破了数据溯源追踪限制,实现生产、销售、运输等全流程数据闭环。应用实例该解决方案已经成功服务新奥舟山接收站、国家管网粤东接收站、杭嘉鑫接收站、中石化天津接收站、中石化董家口等国内 7 家 LNG 接收站及重庆龙冉、雅海 2 家 LNG

22、液化工厂。以舟山接收站为例,舟山岛的出货能力受限于舟山出货通道的物流承载能力。在建设系统之前,政府为保障居民安全性,仅允许水路出岛,此时一天的出货量受限于水路运输承载能力,仅为80车/天;在利用解决方案接入车辆定位数据以及ADAS数据后,政府允许分批次陆路出岛,通过水路联运的方式,使得通道出货能力大幅度提升,达到 350 车/天。同时在智能监控的帮助下,也有效的减少了车辆集中到达、积压的情况,降低道路运输风险。杭嘉鑫接收站位于嘉兴平湖县独山港园区,其地理位置临近沈海高速和 G228 国道,周围道路交通纵横复杂,且接近村庄居民区,进出场车辆与社会车辆及行人混杂,存在交通安全风险。该接收站在浙江担

23、负保障杭嘉湖地区民生供气的任务,因此每天出货量相对较多,槽车运输车辆涉及多家贸易商以及承运方,覆盖上百名驾押人员及车辆,管理难度大。系统上线后,通过智能指派,将计划车辆按远近、是否完成上一单等条件,区分成上午、下午、晚上三个批次,严格按照分批次到达的规定执行。并在园区入口、停车场、接收站分别设定三道无人值守道闸,通过预约、扫码、签到等方式,自动有序的放行,有效保障园区内车辆安全、有序,避免积压。015实施效果主要应用效果1.技术和应用创新LNG 智能交付解决方案将 LNG 交付的传统线下业务形式转变为线上信息化、数字化、智能化管理。LNG 智能交付解决方案通过引入 GPS 定位技术、物联网技术

24、以及人工智能技术,实现车辆在途跟踪系统的智能化。车辆位置和状态的实时监控可以大大减少人工跟踪的偏差,并能自动预警异常情况,提高车辆运输的安全性。同时数字化和自动化技术的应用,实现了进出场操作的数据集成和系统打通,能够减少人为错误和丢失,提高操作的安全性和效率。2.管理效率的提升LNG 智能交付解决方案对管理效率的提升体现在以下三个方面:一是智能化的车辆在途跟踪系统能够实时监控车辆位置和状态,提高运输的可控性和可预测性,能够更准确地安排车辆调度和运输路线,从而提高运输效率。二是进出场操作效率的提升,减少了人工操作所带来的错误和延误,降低了运输过程中的风险和成本。同时,通过自动化技术的应用,进一步

25、提高了操作的效率,节约了人力资源和时间成本。三是 LNG 交付过程的数字化可以提高交付过程高效性。通过实时监控和数据分析,可以及时发现和解决问题,减少交付过程中的误差和延误,提高交付效率。此外,通过引入区块链技术确保数据的真实和安全,提升了整个交付过程的可信度,并为相关方提供了更好的决策依据。3.保障 LNG 交付安全LNG 智能交付解决方案有效保障 LNG 交付全过程安全监管一体化。从人、车、企资质上报审核、人员培训、计划提报、人员答题、自检自查、车辆安检、装车、运输过程一体化全流程监管,保障运输环节安全、可靠,减少安全隐患。4.经济效益LNG 智能交付解决方案通过优化出货计划,增强物流管理

26、,提升效率,保证正常出货;同时构建了线上线下协同处置机制,进一步提高工作效率,加快工作进度,有效减少人力投入成本,降低管理成本,保障各项监管工作有序开展,间接体现了效率提升带来的经济效益。该解决方案借助大数据分析,及时摸排具有重大风险、隐患行为的可疑企业和车辆,从源头上降低道路交通安全事故发生的概率,从而减少经济损失。5.社会效益LNG 智能交付解决方案通过企业动态监管、异常情况监测、违规信息闭环处理、政企协同应用等方式多管齐下,降低了安全隐患,提升了新奥在行业内的品牌影响力;通过接入更多相关部门的数据以及采用目前的新科技装备,辅以大数据分析技术和信息化手段,使得员工的工作效率和管理效能得到显

27、著提高,公司社会数字化治理能力不断强化,新奥的绿色、低碳、智能的战略理念进一步得到宣传。新奥天然气:LNG 智能交付解决方案2024 人工智能&大数据创新应用案例集016行业地位LNG 智能交付解决方案,依据实际的业务痛点,将线下业务操作升级为线上数字化平台操作,进而对业务的路线、模式、工具、方法提供创新性解决方案,彻底消除纸质单据流转,通过数字化留痕进行全流程的数据追踪与大数据分析,通过持续的算法升级进行智能化指派、监控、进出场操作,在业务域内具有核心价值,不受制于外部厂家或被技术卡控。客户认可度LNG智能交付解决方案不仅服务于类似北海华恒、舟山通道等新奥自身业务,同时服务中石化天津、国家管

28、网粤东、杭嘉鑫等 7 家大型接收站以及重庆龙冉、内蒙古雅红等 2 家液厂。在贸易方面,支持7 家中石化销售公司和 SK 的出货;在承运商方面,累计服务 LNG 承运商 618 家,多品类承运商 873 家。申报单位名称新奥天然气股份有限公司单位简介新奥天然气股份有限公司是中国规模最大的民营能源企业之一,经过多年稳步发展,业务覆盖天然气分销、贸易、储运、生产、工程等产业全场景。在全国运营 254 个城市燃气项目,为近 3000 万个住宅用户和 22 万家工商业用户提供燃气服务,覆盖接驳人口超 1.2 亿,总销售气量达 362 亿立方米,约占全国天然气市场消费总额的 10%。新奥股份以优良的业绩表

29、现逐步得到资本市场认可,2022年标普信用评级首次达到 BBB-投资级,国内信用评级提升至 AAA 最高级,ESG 评级提升为 BBB 级,新奥股份首次纳入沪深 300 指数,2022 年位居中国企业 500 强第 220 位。017上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践人工智能创新应用017案例简介上海联通聚焦政企营销场景中存在的依赖客户经理人工经验、客户需求多样化和复杂化、传统被动赋能管理方式不够高效灵活等痛点问题,突破传统数字化营销时效性差和手段单一的瓶颈,创新提出面向政企营销的智能 Copilot 应用与创新实践案例,为政企客户提供高效、精准的营销支持。该

30、案例通过智能 Copilot 系统的研发和应用,实现了对政企营销全过程的智能化管理和优化。智能 Copilot 系统基于先进的人工智能 AIGC 和数字人技术,通过商机、舆情、标讯等外部信息的实时获取,打造商机智能挖掘智能体和智能策略推送能力,基于 RAG 架构打造政企营销客拜辅助问答智能体“源源”,能够深入分析政企客户的需求、行为和市场趋势,为营销人员提供个性化的营销策略建议,为客拜人员提供领域专业知识问答。上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践2024 人工智能&大数据创新应用案例集018背景和主要驱动力通信运营商作为信息社会的基石,具有服务覆盖面广,客户群体

31、多样等特点,在上海联通的业务中,政企客户占据着重要地位,其收入占比近 70%,直接影响着企业的盈利能力和发展潜力。但政企客户具有需求多样化、复杂化及个性化等特点,目前,政企客户营销很大程度上依赖客户经理的经验和个人能力,这导致了客户经理个体成为政企业务发展的关键点,客户经理的流失成为企业经营的严重风险问题。因此,借助人工智能技术在政企客户营销领域的赋能,缩小个体经验差异,以减少业务发展对客户经理个人的依赖,成为企业亟需解决的问题。在这样的背景下,上海联通公司利用人工智能技术赋能政企业务垂直行业应用,为行业转型和创新进行了积极的探索和尝试。本项目旨在通过运用机器学习算法、自然语言处理、语音识别等

32、技术,结合政企客户的特点和需求,构建智能化的解决方案,打造政企 AI 数字员工“源源”,将政企客户营销模式从依靠人工个体经验的重复劳动转变为 AI 智能匹配推荐的模式,以实现客户经理工作的智能化和标准化,提升通信运营商对政企客户的服务水平和业务转化水平。该项目以大模型技术创应用新为核心驱动,围绕政企营销策划和售前支撑全流程场景,构建大模型+传统 AI 能力(小模型、NLP 等)+场景组件工具+智能体+数字人的能力体系,对联通政企业务售前、售中、售后全生命周期进行数智化赋能探索。在注重落地见效,助力企业降本增效,最大化企业效益和减少人工重复劳动的原则基础上,围绕政企营销策划与售前支撑场景,建设政

33、企商机智能推荐、政企售前方案智能辅助应用,构建大模型知识问答和自动化商机挖掘和解决方案生成能力,打造企业新质生产力,推动人工智能在企业的广泛应用。019战略规划和行动路线图纵深推进人工智能发展,实现“以智助网、以智强算、以智融数、以智赋用、以智固安”,构建安全可信、灵活敏捷、层次丰富的立体化全栈式 AI 能力供给体系,聚力打造“一个联通、一体化能力聚合、一体化运营服务”特色能力,形成具有中国联通特色的差异化人工智能高质量发展之路。实施效果沉淀一套智能 copilot 政企营销助手,主要功能如下:1.营销商机洞察挖掘助手:上海联通基于客户信息、行业动态、以及舆情热点等多模态数据,通过开源大模型微

34、调,构建客户商机洞察模型,发现中资出海-国际业务等场景的潜在客户商机。根据预测模型的结果,生成个性化的营销策略,以“工具、平台、场景、数据治理、流程治理”五要素为抓手,大中小屏穿透下发策略任务,实现针对特定客户群体和产品,输出一客一策和一品一策的营销方案,以满足客户的个性化需求,提升客户体验和满意度,有效避免了传统营销方式的广撒网式盲目推送,提高了营销的精准度和效率,助力提升销售额和市场份额,每月可输出有效客户商机 1 万多条。2.客户拜访智能助手:在客户拜访环节引入智能化能力,打造政企产品问答助手“源源”。以大模型归纳总结和问答能力为抓手,构建自然语言应答引擎。通过构建向量知识库,以政企产品

35、领域知识语料扩充政企领域大模型知识覆盖面和问答能力。以数字人的方式作为前端问答交互形式,构建政企产品数字员工,实现自然语言交互式产品营销知识和解决方案问答,当前问答准确率 91%。智能 copilot 助手已在实际场景中得到验证,给企业带来了显著的价值效益。首先,在企业经济效益方面,通过政企智能营销工具累计生成推送智能营销方案 80000+份,营销转化收入超 3 亿,助力要客市场份额增收联通集团内排名第二,同时借助智能营销商机自动捕获,助力潜在企业客户突破上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践2024 人工智能&大数据创新应用案例集020184 家,拉动收 2.5

36、4 亿;其次在客户服务满意度方面,凭借高度匹配客户诉求的智能化营销方案,客户满意度有效提升,在较期初提升 10PP;最后在客户经理体验方面,客户经理在营销过程中遇到的业务问题通过智能问答工具得到即时响应,问题解决效率提升 80%,客户经理对内服务满意度达 92%,提高 24PP,同时降低人工支撑用人成本 240 万。在技术能力效果方面,知识库目前涵盖政企产品语料 425 篇,涉及产品 251 个,token 量 2451290;规章制度语料 24 篇,token 量 1078562;采购语料 26 篇,token 量 424984,针对 188 个政企产品进行 81 个属性精标构建知识图谱,问

37、答准确率达94%。同时,基于本次政企营销策划和售前支智能化撑场景的探索和实践经验,上海联通总结出数智化场景落地“七步法”的一套方法论。明确智能化场景技术驱动的总体思路,在准备环节,开发环节,运营环节上,以“明确场景、确定目标、识别语料、技术选型、场景开发、推广发布、运营迭代”为核心步骤,确保数智化场景的成功落地和持续优化。实施难度与复杂度一.技术实现的难度多种场景化工具组件的应用,提升预测准确性并简化用户操作:采用的场景化组件包括:领域知识工具、场景流程工具、插件管理工具、检索增强工具以及业务知识库、方案库等。这些工具组件是模型落地的关键基础设施,它们确保模型能够在实际业务场景中高效运行,提供

38、准确的预测和分析,同时简化用户的操作流程,提升整体的工作效率。模型技术架构的提升,推动智能化服务的广泛应用:依托语料文档工具,通过标注流程实现知识的标准化、切片处理、关键词抽取、向量化转换以及向量的自动录入,最终构建出专业领域知识。在此过程中,源文档、标准化语料以及精标语料被整合成统一的语料集,并存储于 MinIO 元文件库及向量知识库中。在答案生成环节,利用通义千问 Qwen-14B 模型的推理、计算与生成能力,结合提示词工程,打造精准的 prompt 模板,为用户提供高效回答。在意图识别方面,采用 BERT 模型,对用户的行为意图、认知意图、生成意图以及引导意图进行精准识别,并借助 LoR

39、A 微调技术提升识别准确性。此外,还利用 BART 模型进行信息降噪处理,包括漏字纠偏、错别字纠偏、同音字纠偏等,确保问题表述准确。在交互层面,设计了交互收集器,支持语音识别、文字输入、语音输出、文字输出等多种交互方式,为用户提供便捷、自然的交互体验。最后,开放大模型能力,支持数字人形象交互、开放式触点(如 APP、PC 端)以及 plugin/API 的接入,从而满足不同场景下的应用需求,推动智能化服务的广泛应用。021智能回答与视频流优化新突破:依托深度学习框架 Pyrotch 构建了 Whisper 模型、S3DF 模型、高清推流模型、192*192 模型、Real-GAN 模型、Dif

40、fusion 模型。主要实现包括:语音采集核查、面部识别、嘴部动作生成、视频清晰度优化以及动作生成等。同时,借鉴开源模型自主研发实时帧算法模型与流式生成模型,实现流式断点续传的视频推流,降低与用户交互延迟,实现 3S 内响应。在数字员工形象设计方面,注重造型、表情、动作和声音,更精心塑造性格特征,确保数字员工能够呈现出独特且符合用户期待的形象。在交互能力方面,数字员工对接了政企产品咨询、政企商机推荐、方案问答,基于大模型回复内容(语音/文本)为数字员工添加了自然流畅的语音。二、业务需求的复杂度针对政企客户多样性的需求,提供定制化解决方案:不同行业、不同规模的政企客户在营销方面具有需求多样化、复

41、杂化及个性化等特点,项目需要深入了解并满足这些多样化的需求,提供定制化的解决方案。这要求团队具备丰富的行业知识和经验,以及灵活的项目管理和执行能力。通过业务流程的整合,实现跨部门、跨系统的协调:项目需要与政企客户的现有业务流程进行紧密整合,以确保数据的准确传递和业务的顺畅进行。这要求团队具备深厚的行业洞察力和跨部门、跨系统的协调能力。案例亮点1.精准定位政企客户需求,推动营销战略向智能化、个性化转型以前沿技术为驱动力,推动上海联通在政企营销领域的战略转型。通过引入人工智能、大数据等先进技术,项目实现了从传统营销向智能化、个性化营销的转变,提升了营销效率和用户体验。这种战略转型不仅体现了上海联通

42、对市场趋势的敏锐洞察,也展示了其积极拥抱新技术、持续创新的决心。上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践2024 人工智能&大数据创新应用案例集022精准定位政企客户需求的能力。通过深入了解不同行业、不同规模、不同地域的政企客户在营销方面的特定需求,项目能够提供定制化的解决方案,满足客户的个性化需求。这种精准定位不仅增强了项目的市场竞争力,也为上海联通在政企营销领域树立了良好的口碑。2.提供更高效、便捷、个性化的解决方案过引入智能 Copilot 应用,项目实现了对政企客户营销活动的智能化管理,提供了更加高效、便捷的营销工具。同时,项目还不断探索新的业务模式和产品服

43、务,如基于大数据的用户画像分析、精准营销推荐等,进一步丰富了上海联通在政企营销领域的产品线和服务体系。通过不断收集用户反馈、分析用户需求、改进产品和服务,项目能够确保用户在使用过程中获得良好的体验和服务。这种以用户为中心的战略思想不仅有助于提升项目的市场口碑,也为上海联通在政企营销领域的长期发展奠定了坚实的基础。3.理论创新,总结并提出大模型问答精确性评估方法经过行业调研,当前暂无权威机构发布的垂类大模型准确率评估标准,为保障系统的正向迭代和运营,首先对问答的精确性进行了定义。采用准确率人工专家评分+ROUGE-L 算法自动获得召回率,综合准确率和召回率得到 F1 值作为智能问答系统的精准性评

44、估算法。准确率:专家按类别进行分类定义:完全正确、基本正确、部分正确、完全不正确,赋予分类不同的权重得分,将所有预测为正确(即,完全正确、基本正确和部分正确)的回答的权重之和除以系统给出的所有回答的数量得到准确率。召回率:ROUGE-L 算法通过计算系统生成的回答内容与参考答案之间的最长公共子序列(LCS)的长度自动计算召回率,如果生成文本中的大量内容与参考答案相匹配,则该文本的召回率相对较高。F1 评估值公式:F1=2*Precision*Recall/(Precision+Recall)。4.能力创新,微调和检索增强技术全面提升大模型效果一是问答准确率提升:问答是大语言模型技术应用的一个重

45、要场景,大模型技术的应用大大增强了用户互动的自然性和流畅性,但在实际使用中,大模型往往存在幻觉、数据偏见和准确率不高等问题,业界通常使用向量库检索增强来进行专业领域知识的召回,但准确率的提升不足以满足行业 B 端客户的需求。为提高问答准确率,新增“意图识别”和“知识图谱”功能模块。使用 BERT 模型作为意图识别模型基础架构,对不同意图的数据集进行实体标注,通过标注句法额外融入词性、句法分析,构建出准确鲁棒的意图识别模型,进一步提升实体提取和意图分类的准确率。数据准备过程中对原始数据进行知识的抽取,将抽取的多元组构建闭环的政企产品知识体系,形成知识图谱,使智能问答系统能够更精准地检索到专业领域

46、知识,进一步提升回答的准确性和深度。023二是内容生成能力提升:在大语言模型技术的基础上,通过多波次分片整合方案实现了内容生成能力的显著提升,更好地满足高级别的业务需求。多波次分片整合方案采取以意图识别对意图进行衍生,将需要生成的内容段落衍生出多个相关的问题,针对这些问题,逐一进行答案生成,再通过微调后的大模型进行汇总和提炼,将融合的长文本内容输出。这种方法在使用低参数量大模型的情况下,成功提升了内容生成的效率和质量,使得内容的采纳率显著提高至 60%以上。5.形式创新,真人数字人交互形式提升交互感知传统的 H5 页面交互形式缺乏沉浸式体验感,为提升交互感知,选择“真人数字人集成大模型问答”的

47、形式,通过形象采集、数据清洗、渲染生成、语音合成、驱动模型训练 5 个核心环节构建 3D 数字人,重点采用 MuseTalk 模型实时驱动生成数字人嘴部动作视频,结合 WebRTC 动态推拉流,实现真人形象数字人实时动态交互。为提升交互时效性,区别于传统视频流推送服务,对大模型回答进行文字切片,使用断点续传流式生成数字人视频,进一步提升交互感知。当前数字人从唇形精准度、表情丰富度、动作协调度等维度与真人相似度 90%以上。版本技术策略段落采纳率v1.0大模型自身泛化能力15%-20%v2.0大模型自身泛化能力+提示工程+微调30%-40%v3.0大模型自身泛化能力+提示工程+微调+意图识别+向

48、量库+多波次分片整合60%以上上海联通:上海联通面向政企营销的智能 Copilot 应用与创新实践2024 人工智能&大数据创新应用案例集0246.模式创新,大模型应用推动生产运营模式变革聚焦政企客户营销调度和售前支撑全流程场景,在营销策划环节通过商机、舆情、标讯等外部信息的实时获取,结合内部客户标签,形成自动化的智能策略能力,实现 AI 智脑洞察替代传统营销策划人员;在客户拜访环节应用大模型技术输出政企营销领域知识问答和客拜纪要生成能力,提升对客户经理的赋能程度;在售前支撑环节应用大模型技术输出解决方案自动生成能力,实现 AI 生成替代传统解决方案人员。推动政企营销全场景生产运营模式由“被动

49、赋能”模式转变为“主动推送”,“人工经验”模式转变为“AI 生成”的人机协同模式。025申报单位名称中国联合网络通信有限公司上海市分公司单位简介中国联合网络通信有限公司上海市分公司(以下简称“上海联通”)是中国联通在上海的重要分支机构,拥有包括移动和固定通信业务在内的全业务经营能力。按照上海主要行政区划分,上海分公司下设13个区分公司,全面服务于对口区域的经济建设和社会发展。截至目前,全口径人员达 5451 人,其中合同制员工 3007 人,平均年龄 35 岁。融合以来,在上海市委、市政府和集团公司的正确领导下,上海分公司基于自身资源禀赋,在 5G、云、大、物、智、安等领域加快业务布局,走出了

50、以创新为引领的差异化发展道路,全面服务公众及各行各业通信服务需求。“十三五”期间,上海分公司收入、利润等关键业绩指标持续改善,效益持续增长,圆满完成混改第一个三年盈利计划目标。在经济效益稳步增长的同时,上海分公司始终坚持党建统领全局,蝉联 3 届全国文明单位称号,蝉联 9 届上海市文明单位称号。“十四五”期间,上海分公司将力争打造成为一个创新领域更为领先、数字化运营能力更强、要素配置效率更高、服务质量更优、企业治理效能更好、企业活力更充沛、政治生态更优、员工幸福指数更高、社会各界更为信赖的行业领先的综合数字服务运营商,成为数字经济建设的主力军,实现上海分公司在新征程上的新跨越、新发展,为上海经

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 研究报告 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服